Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour pouvez vous donner une procédure qui explique comment retrouver l'équation d'une parabole don't on connait les racines et un autre point s'il vous plaît ​

Sagot :

Soit f, une fonction parabolique.
f est de degré 2.
Soit x1 et x2 ses racines et soit (a,b) tel que f(a) = b. Avec a non egal a x1 ou x2.
On sait que f(x1) = f(x2) = 0.
et que f(a) = b.

Nos 3 points sont donc:

(x1,0),(x2,0) et (a,b)

En utilisant la théorie interpolatrice de Lagrange, on est assuré qu’il est existe un unique polynôme (et donc une unique fonction polynomial associée) passant par ces 3 points.

Ce polynôme est:

P = b(X - x1)(X-x2)/((a-x1)(a-x2))
(J’ai utilisé la formule de Lagrange pour avoir ce polynôme)

Sa fonction polynomial associée est :

f(x) = b(x - x1)(x-x2)/((a-x1)(a-x2))

On a bien f(x1) = f(x2) = 0 et f(a) = b

Et on assuré que cette fonction est l’UNIQUE fonction polynomial vérifiant nos hypothèses.

La procédure utilisée est donc la théorie interpolatrice de Lagrange.

En espérant t’avoir aidé, bonne journée
caylus

Réponse :

Bonjour,

Une méthode scolaire plus accessible pour un lycéen:

Explications étape par étape :

La parabole passe par le point (a,b)

La parabole f(x) a deux racines x1 et x2 car si elle n'avait pas de racines (réelles), le problème serait indéterminé.

Son équation sera : f(x)=k*(x-x1)(x-x2)

et f(a)=b=k*(a-x1)(a-x2) ou encore k=b/((a-x1)(a-x2))

Ainsi [tex]\boxed{f(x)=\dfrac{b}{(a-x_1)(a-x_2)}*(x-x_1)(x-x_2)}\\\\[/tex]