Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.
Sagot :
Bonsoir,
J'ai pas tout compris avec les noms, je considère que Lou = Léa et Noah = Nicolas. (il faut se faire manger le doigt pour gagner??)
Pour [tex]k=1[/tex] (Une seule manche):
[tex]L_1[/tex] est "Lou gagne la première partie", on calcule donc la probabilité de gagner une partie en ayant commencé notée [tex]P(A)[/tex].
Il y a 4 possibilités, Lou peut gagner au 1,3,5,7eme coup.
Notons [tex]B_i[/tex] "Lou gagne au i-eme coup"
On a alors [tex]A=B_{1} \cup B_{3} \cup B_{5} \cup B_{7}[/tex]
Puisque que les évènements sont incompatibles [tex]P(A)=P(B_1)+P(B_3)+P(B_5)+P(B_7)[/tex].
On peut calculer ces probabilités comme expliqué dessous:
[tex]\begin{cases}P( B_{1}) =\frac{1}{7}\\P( B_{3}) =\frac{6}{7} \times \frac{5}{6} \times \frac{1}{5}\\P( B_{5}) =\underbrace{\frac{6}{7} \times \frac{5}{6} \times \frac{4}{5} \times \frac{3}{4}}_{Perdre\ les\ 4\ premiers\ coups} \times \underbrace{\frac{1}{3}}_{Gagner\ le\ 5eme}\\P( B_{7}) =\frac{6}{7} \times \frac{5}{6} \times \frac{4}{5} \times \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2} \times 1\end{cases}[/tex]
Il faut alors faire le calcul et tu connaîtras [tex]P(A)[/tex].
Soit k supérieur à 2:
On peut interpréter [tex]L_k[/tex] comme "Lou perd les k-1 parties et gagne la k ème" donc en notant [tex]A_i[/tex] "Lou gagne la i-ème partie" on a
[tex]L_k=\bigcap _{i=1}^{k-1}\overline{A_{i}}\bigcap A_{k}[/tex]
Chaque partie est indépendante donc les [tex]A_i[/tex] sont indépendants donc les [tex]\overline{A_{i}}[/tex] et [tex]A_k[/tex] le sont aussi.
Ainsi
[tex]\begin{aligned}P( L_k) & =P( A_{k})\prod _{i=1}^{k-1} P\left(\overline{A_{i}}\right)\\ & =P( A_{}) P\left(\overline{A_{}}\right)^{k-1}\\ & =P( A_{})( 1-P( A_{}))^{k-1\end{aligned}[/tex]
(A la deuxième égalité j'utilise que les probabilités de gagner les i-ème parties sont les mêmes que de gagner une seule partie)
J'espère ne pas avoir fait de faute, dis moi s'il y a des trucs que tu comprends pas.
(L'exo est bien énervé quand même)
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.