Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonjour, je suis bloqué sur la dernière question de cette exercice, quelqu’un pourrait m’aider svp, merci beaucoup d’avance.
Soit, dans un repère orthonormé, les points A (O; 2), B (1 ; 6) et C (4; 4). 1. Déterminer les coordonnées du point D (x; y) tel que ABCD soit un parallélogramme. 2. Déterminer les coordonnées du point M centre du parallélogramme 3. Calculer le périmètre de ABCD. 4. Soit E (14/3;20/3). Montrer que (AB) / (DE).


Sagot :

Réponse :

4. Soit E (14/3;20/3). Montrer que (AB) // (DE)

tout d'abord il faut déterminer les coordonnées du point D

soit D(x ; y) tel que ABCD soit un parallélogramme

donc on écrit  vec(AB) = vec(DC)  ⇔ (1 ; 4) = (4-x ; 4 - y)

⇔ 1 = 4 - x  ⇔ - 3 = - x  ⇔ x = 3  et  4 = 4 - y  ⇔ y = 0

D(3 ; 0)

vec(AB) = (1 ; 4)

vec(DE) = (14/3 - 3 ; 20/3)

dét(vec(AB) ; vec(DE)) = xy' - x'y = 1* 20/3 - 5/3 * 4 = 20/3 - 20/3 = 0

det(vec(AB) ; vec(DE)) = 0  ⇒ les vecteurs AB et DE sont colinéaires

donc on en déduit que les droites (AB) et (DE) sont  parallèles

Explications étape par étape :

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.