Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Bonjour, je suis bloqué sur la dernière question de cette exercice, quelqu’un pourrait m’aider svp, merci beaucoup d’avance.
Soit, dans un repère orthonormé, les points A (O; 2), B (1 ; 6) et C (4; 4). 1. Déterminer les coordonnées du point D (x; y) tel que ABCD soit un parallélogramme. 2. Déterminer les coordonnées du point M centre du parallélogramme 3. Calculer le périmètre de ABCD. 4. Soit E (14/3;20/3). Montrer que (AB) / (DE).


Sagot :

Réponse :

4. Soit E (14/3;20/3). Montrer que (AB) // (DE)

tout d'abord il faut déterminer les coordonnées du point D

soit D(x ; y) tel que ABCD soit un parallélogramme

donc on écrit  vec(AB) = vec(DC)  ⇔ (1 ; 4) = (4-x ; 4 - y)

⇔ 1 = 4 - x  ⇔ - 3 = - x  ⇔ x = 3  et  4 = 4 - y  ⇔ y = 0

D(3 ; 0)

vec(AB) = (1 ; 4)

vec(DE) = (14/3 - 3 ; 20/3)

dét(vec(AB) ; vec(DE)) = xy' - x'y = 1* 20/3 - 5/3 * 4 = 20/3 - 20/3 = 0

det(vec(AB) ; vec(DE)) = 0  ⇒ les vecteurs AB et DE sont colinéaires

donc on en déduit que les droites (AB) et (DE) sont  parallèles

Explications étape par étape :