Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonjour, est-ce que quelqu’un pourrait m’expliquer ces questions s’il vous plaît

Bonjour Estce Que Quelquun Pourrait Mexpliquer Ces Questions Sil Vous Plaît class=

Sagot :

Pidio

Bonjour !

2)

[tex]P(x)- {x}^{2} + 6x - 9 < 0[/tex]

On calcule le discriminant.

[tex]\Delta {b}^{2} - 4ac \\ \Delta = {6}^{2} - 4 \times ( - 1) \times ( - 9) \\\Delta = 36 - 36 = 0[/tex]

∆=0 donc l'équation P(x)=0 admet une solution donnée par [tex]x = \frac{ - b}{2a} = \frac{ - 6}{2 \times ( - 1)} = 3[/tex].

Comme ∆=0, le trinôme est du signe de a.

  • Conclusion :

Le trinôme est inférieure à 0 (mais pas strictement inférieur, il est égal à 0 pour x=3).

__________________

3)

Prenons un exemple :

[tex] {x}^{2} + x - 2 = 0[/tex]

[tex]\Delta = {1}^{2} - 4 \times 1 \times ( - 2) \\ = 1 + 8 \\ = 9[/tex]

Il admet deux solutions réelles.

[tex]x_1= \frac{ - 1 + \sqrt{9} }{2 \times 1} \\ = \frac{ - 1 + 3}{2} \\ = 1[/tex]

[tex]x_2= \frac{ - 1 - \sqrt{9} }{2 \times 1} \\ = \frac{ - 4}{2} \\ = - 2[/tex]

Maintenant, multiplions les coefficients.

[tex]2 {x}^{2} + 2x + 4 = 0[/tex]

On remarque déjà que dans ce cas, les solutions seront les mêmes (car on peut à nouveau diviser par 2).

On peut la résoudre quand même pour vérifier.

[tex]\Delta = {2}^{2} - 4 \times 2 \times ( - 4) = 36[/tex]

[tex]x_1= \frac{ - 2 + \sqrt{36} }{2 \times 2} = 1[/tex]

[tex]x_2= \frac{ - 2 - \sqrt{36} }{2 \times 2} = - 2[/tex]

On remarque que les solutions sont les mêmes.

  • Conclusion :

L'affirmation est donc fausse (dans ce cas, les solutions sont les mêmes, mais dans d'autres cas, elles seront différentes, etc...).

Bonne soirée

bonjour

2)

- x² + 6x - 9 = - (x² - 6x + 9) = - (x - 3)²

 le trinôme est nul pour x = 3, pour toutes les autres valeurs de x il est négatif puisque (x - 3) est un carré

Faux

il n'est pas strictement négatif pour tout x puisqu'il existe une valeur de x, qui est 3, pour laquelle il est nul

3)  

soit une équation du second degré  ax² + bx + c = 0 (1)

si on multiplie tous les coefficients par 2 l'équation devient

    2ax² + 2bx + 2c = 0

elle peut s'écrire

 2(ax² + bx + c) = 0  (2)

or

2(ax² + bx + c) = 0    est équivalent à     ax² + bx + c = 0

FAUX

les équations (1) et (2) sont équivalentes. Si l'on multiplie les coefficients d'une équation du second degré par 2 les solutions restent les mêmes

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.