Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
Réponse :
pouvez vous s'il vous plaît m'expliquer ou détailler les calculs de cette mise sous forme canonique ?
pourquoi diviser par 5
pourquoi 3/5 passe à 3/10 pourquoi -2/5 également svp
et pourquoi 49/100 passe à 49/20 ?
h(x) = 5 x² - 3 x - 2 pour rendre h(x) sous la forme canonique
on doit mettre 5 en facteur
donc h(x) = 5(x² - 3 x/5 - 2/5) on divise par 5 parce que on mit 5 en facteur et si tu développe h(x) on trouve
h(x) = 5 x² - (3 x/5) * 5 - (2/5) * 5 = 5 x² - 3 x - 2
h(x) = 5(x² - (3/5) x - 2/5) le but recherché est de trouver une identité remarquable
h(x) = 5(x² - (3/5) x - 2/5) on ajoute et on retranche la même valeur
qui 9/100 à l'intérieur de la parenthèse
h(x) = 5(x² - (3/5) x + 9/100 - 9/100 - 2/5) or 9/100 = (3/10)²
h(x) = 5(x² - (3/5) x + (3/10)² - 9/100 - 2*20/100)
= 5(x² - (3/5) x + (3/10)² - 49/100) or x² - (3/5) x + (3/10)² est une identité remarquable (a - b)² = a² - 2 ab + b² ici a = x et b = 3/10
= 5((x - 3/10)² - 49/100)
= 5(x - 3/10)² - 49 *5/100
= 5(x - 3/10)² - 49/20
Explications étape par étape :
bonjour
La forme canonique d'un trinôme du second degré ax² + bx + c (a ≠ 0)
est l'écriture de ce trinôme sous la forme
a(x - α)² + β (1)
le problème étant de trouver α et β
h(x) = 5x² - 3x - 2
dans (1) on a (x - α)² dont le développement commence par x²
ligne 1
on fait apparaître ce x² en mettant 5 en facteur
h(x) = 5[x² - (3/5)x - 2/5]
ligne 2
h(x) = 5[x² - (3/5)x - 2/5]
on considère x² - (3/5)x : ce doit être le début du développement
du carré d'une différence [ (x - α)²]
(3/5)x est le double produit
on met ce facteur 2 en évidence
(3/5)x = 2 * (3/10) * x
h(x) = 5 [x² - 2*(3/10)x - 2/5]
ligne 3
on remplace x² - 2*(3/10)x par (x - 3/10)²
en faisant cela on ajoute le carré de 3/10, pour compenser on le retranche
h(x) = 5[ (x - (3/10) )² - (3/10)² - 2/5]
on a trouvé α qui vaut 3/10
β = - (3/10)² - 2/5
= -9/100 - 2/5
= -9/100 - (2 x 20)/5 x 20)
= -9/100 - 40/100
= -49/100
h(x) = 5[ (x - (3/10) )² - 49/100] on distribue 5
h(x) = 5[x - (3/10)]² - 5*(49/100)
h(x) = 5[x - (3/10)]² - 49/20
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.