Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour, il faudrait résoudre cette inégalité mais je ne m’y retrouve pas entre les changements de signes et/ou double réponse (11 ou -11)
x² < 121
Merci par avance


Sagot :

Réponse :

Bonsoir

Explications étape par étape :

On doit connaitre l'ensemble de définition D de l'inéquation

ici D = IR

x² < 121 ⇔ x² - 121 < 0

Pour résoudre l'inégalité, il faut d'abord résoudre l'équation

x² - 121  = 0,  pour ensuite établir le tableau de signes de l'inéquation

x²<121

x² - 121 est de la forme a² - b² = (a - b)(a + b)

avec a² = x² et b² = 121 = 11²

donc a = x et b = 11

On a donc x² - 121 = (x - 11)(x + 11) = 0

Le produit de facteurs est nul si l'un des deux facteurs est nul

on a donc

(x - 11)(x + 11) = 0

si x - 11 = 0 ou x + 11 = 0

si x = 11 ou x = - 11

S = { - 11; 11}

On peut établir le tableau de signes pour résoudre l'inéquation x² < 121

x           - ∞                                - 11                                    11                         + ∞

(x - 11)                        -                                  -                    ⊕          +                

(x + 11)                        -                ⊕              +                                +                

x² - 121                      +                ⊕               -                   ⊕          +                

D'après le tableau de signes, on peut résoudre l'inéquation et on a :

S = ] - 11; 11 [

bonjour

x² < 121                             D = R

x² - 121 < 0

x² - 11² < 0             on factorise le 1er membre, différence de deux carrés

(x - 11)(x + 11) < 0

tableau des signes

 x                -∞              -11                        11                             +∞

x - 11                 -                           -            0            +

x + 11                -              0           +                          +

(x-11)(x+11)        +              0           -            0             +

                    //////////////////                          //////////////////////////

S = ]-11 ; 11[

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.