Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonjour je suis en classe de première et je ne réussi pas à faire cette exercice sur la géométrie. Pouvez vous m'aider ? Merci d'avance !

Bonjour Je Suis En Classe De Première Et Je Ne Réussi Pas À Faire Cette Exercice Sur La Géométrie Pouvez Vous Maider Merci Davance class=

Sagot :

bonjour

   L'orthocentre du triangle ABC est le point de concours des hauteurs de ce triangle

• soit (d) la hauteur passant par B et M(x : y) un point du plan

             M(x ; y) ∈ (d)  <=>  vect BM • vect AC = 0     (produit scalaire nul)

B(2 ; -3) ; M(x ; y)

coordonnées vect BM : (x - 2 ; y - (-3) )

                                        (x - 2 ; y + 3)

A(-4 ; 0)  ;  C(0 ; 3)

coordonnées vect AC : (0 - (-4) ; 3 - 0)

                                        (4 ; 3)

 équation (d) :

vect BM • vect AC = 0  <=> (x - 2)*4 + (y + 3)*3 = 0           [ XX' + YY' = 0 ]

                                      <=>  4x - 8 + 3y + 9 = 0

                                      <=>  4x + 3y + 1 = 0  (1)

• soit (d') la hauteur passant par A et M(x : y) un point du plan            

         M(x ; y) ∈ (d')  <=>  vect AM • vect BC = 0    

              M(x ; y)    et   A(-4 ; 0)

          vect AM ( -4 - x ; 0 - y)

                         ( -x - 4 ; -y)

              B(2 ; -3 )    et   C(0 ; 3)

            vect (BC) (0 - 2 ; 3 - (-3) )

                             (-2 ; 6)

équation de (d')

        vect AM • vect BC = 0   <=> -2(-x - 4) + (-y)*6 = 0

                                                <=> 2x + 8 - 6y = 0

                                               <=> 2x - 6y + 8 = 0

                                               <=>

le couple des coordonnées de H, orthocentre du triangle ABC, est

la solution du système (1) et (2)

  4x + 3y + 1 = 0  (1)

    x - 3y + 4 = 0   (2)

par addition membre à membre

  5x + 5 = 0

    x + 1 = 0

    x = - 1

calcul de y dans (2)

   -1 -3y + 4 = 0

      3 = 3y

      y = 1

réponse : H(-1 ; 1)

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.