Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Bonjour,

pour 4x²-9[tex]\leq 0[/tex]

j'ai mis: (4x-3)²[tex]\leq 0[/tex]

x[tex]\leq (3/4)[/tex]

Est-ce que c'est bon?

Sagot :

Réponse :

Solution = [ -3/2 ; +3/2 ]

Explications étape par étape :

■ (2x-3) (2x+3) ≤ 0 donne Solution = [ -3/2 ; +3/2 ] .

Bonjour


4x^2 - 9 << 0


si tu développes ce que tu as écris tu te rendras compte que c’est incorrecte :

(4x - 3)^2 = 16x^2 - 24x + 9 # 4x^2 - 9


C’est une identité remarquable mais ce n’est pas la bonne que tu as utilisé :

4x^2 - 9 << 0

(2x)^2 - 3^2 << 0


a^2 - b^2 = (a - b)(a + b)


(2x - 3)(2x + 3) << 0


2x - 3 = 0 et 2x + 3 = 0

2x = 3 et 2x = -3

x = 3/2 et x = -3/2


x………….|-inf………(-3/2)…….3/2…….+inf

2x-3…….|……(-)…………….(-)….o….(+)……..

2x+3……|……(-)……..o……(+)………(+)………

Ineq…….|……(+)…….o……(-)…..o….(+)…….


[tex]x \in [-3/2 ; 3/2][/tex]

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.