Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

domaine de definition de cette fonction avec explication
svp
[tex] \frac{ {e}^{x} }{ {e}^{x} - x} [/tex]


Sagot :

Ici il faut vérifier les condition d’existence
La seule a vérifié est que le dénominateur doit être différent de 0

e^x-x=!0
e^x=!x

Toujours vrai donc le dénominateur ne s’annule pas

Le domaine est donc R

Réponse :

Explications étape par étape :

■ e^x - x doit ne pas être nul :

  il faut donc e^x ≠ x

  ce qui est TOUJOURS vérifié

  d' où Domaine de définition = IR .

■ dérivée f ' (x) :

   f ' (x) = (e^x - x)*e^x - e^x(e^x - 1) / (e^x - x)²

            = e^x(1 - x) / (e^x - x)²

   cette dérivée est nulle pour x = 1

                                 négative pour x > 1

■ tableau :

    x --> - ∞       -0,567        0     0,26        1          2,54         + ∞

f ' (x) -->                   positive                      0     négative

  f(x) --> 0+         0,5            1      1,25    1,582       1,25          1+              

   ( valeurs arrondies en italique ☺ )

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.