Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

bonjour,svp aidez moi,merci d'avance
voici la question:


Bonjoursvp Aidez Moimerci Davance Voici La Question class=

Sagot :

bonjour

(1)   (x/y) -1 ≥ 1 - (y/x)    <=>  

(x/y) + (y/x) ≥ 2       <=>    (1er membre dénominateur commun xy)

(x²/yx) + (y²/xy) ≥ 2  <=>

(x² + y²)/xy ≥ 2        <=>        on multiplie les deux membres par xy > 0  

x² + y² ≥ 2xy          <=>

x² -2xy + y² ≥ 0       <=>

(x - y)² ≥ 0   (2)                    

(x - y)² est un carré donc toujours positif (nul pour x = y)

(2) est équivalent à (1)

(2) est toujours vrai, il en est de même de (1)

caylus

Réponse :

Bonjour,

Explications étape par étape :

x, y strictement positifs

On pose a=x/y >0

[tex](a-1)^2\geq 0\\\\\Longrightarrow\ a^2-2a+1\geq 0\\\\\Longrightarrow\ a-2+\dfrac{1}{a} \geq 0\\\\\\\Longrightarrow\ a-1 \geq 1-\dfrac{1}{a}\\\\\\\Longrightarrow\ \boxed{\dfrac{x}{y}-1 \geq 1-\dfrac{y}{x} }[/tex]

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.