Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.
Sagot :
bonjour
1) Le domaine de définition D = R
2) montrer qu’elle est impaire
f(-x) = |-2x + 1| - (-x) - |-2x - 1| // -2x + 1 et 2x - 1 sont opposés
= |2x - 1| + x - |2x + 1| // ils ont même valeur absolue
= - |2x + 1| + x + |2x - 1| // de même pour
= - [ |2x + 1| - x - |2x - 1| ] // -2x - 1 et 2x + 1
= - f(x)
pour tout x ∈ R on a -x ∈ R et f(-x) = - f(x)
c'est la définition d'une fonction impaire
3)
Écrire sans valeur absolue
si 2x + 1 >0 soit x > -1/2 alors |2x + 1| = 2x +1
si 2x + 1 < 0 soit x < -1/2 alors |2x + 1| = opposé de 2x + 1 = -2x - 1
on fait de même pour 2x - 1
x -1/2 1/2
|2x + 1| -2x - 1 2x + 1 2x + 1
|2x - 1| -2x + 1 -2x + 1 2x - 1
• pour x ∈ ]-∞ ; -1/2] f(x) = -2x - 1 - x - (-2x + 1) =
= -2x - 1 - x + 2x - 1
f(x) = -x - 2
• pour x ∈ ]-1/2 ; 1/2] f(x) = 2x + 1 - x - (-2x + 1)
= 2x + 1 -x + 2x -1
f(x) = 3x
• pour x ∈ ]1/2 ; +∞[ f(x) = 2x + 1 - x - (2x - 1)
= 2x + 1 - x - 2x + 1
f(x) = -x + 2
4)
Donner le tableau de variation
x -1/2 0 +1/2
-x - 2 ↘ ////////////////////////////////////////////////////////////////
3x ///////////////////// ↗ ////////////////
-x + 2 /////////////////////////////////////////////////////////////////// ↘
x -∞ -1/2 0 +1/2 +∞
f(x) +∞ 3/2
↘ ↗ ↘
-3/2 -∞
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.