Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour pourriez-vous m’aider s’il vous plaît merci.

On considère la fonction f définie par : f(x) = 1/√x

a) Déterminez l’ensemble de définition Df de la fonction f.
b) Dressez les tableaux de signe et de variations de f .
c) Donnez le minimum et le maximum de la fonction f sur l’intervalle { 1/9 ; 4 }


Sagot :

Réponse :

On considère la fonction f définie par : f(x) = 1/√x

a) Déterminez l’ensemble de définition Df de la fonction f.

     il faut que  x > 0   ⇔ Df = ]0 ; + ∞[  

b) Dressez les tableaux de signe et de variations de f .

tableau de signe de f

x      0                      + ∞

f(x)                +

la fonction f est une fonction inverse de √x  qui est dérivable sur Df

et sa dérivée  f ' est  f '(x) = (1/u)' = - u'/u² = - 1/2x√x

puisque  x > 0 et √x > 0  donc 2 x√x > 0  et - 1 < 0  donc  f '(x) < 0

tableau de variations de f  sur  Df

        x    0                            + ∞

     f (x) + ∞ →→→→→→→→→→→  0

                   décroissante

c) Donnez le minimum et le maximum de la fonction f sur l’intervalle { 1/9 ; 4 ]

f(1/9) = 1/√(1/9) = 1/1/√9 = 1/1/3 = 3  maximum

f(4) = 1/√4 = 1/2   minimum

Explications étape par étape :

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.