Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour est-ce que quelqu'un veut bien m'aider s'il vous plais ?
merci infiniment si c'est le cas

Exercice 3
Dans un repère du plan soient les point A(3 ; 4), B(1 ; -1) et C(6 ; -2).
1. Déterminer une équation cartésienne de la droite (AB).
2. Déterminer une équation cartésienne de la droite (d) passant par I milieu de [AC] et parallèle à
(AB).
3. Soit (d’) la droite d’équation (d’) : -16x + y + 98 = 0.
Prouver que (d’) et (AB) sont sécantes.
Calculer les coordonnées de ce point d’intersection, noté D.

Exercice 4
1. Dans le repère donné en annexe, tracer, en justifiant, la droite (d1) d'équation
y = 3x – 4.
2. Soit (d2) la droite parallèle à (d1) passant par H(-2 ; -3).
a. Déterminer l'équation de (d2). Justifier.
b. Tracer (d2) dans le repère.
3. Soit (d3) la droite passant par K(-6 ; 5) et L(-3 ; -1).
a. Déterminer par le calcul l'équation de (d3). Justifier.
b. Tracer (d3) dans le repère.
c. (d3) coupe l'axe des abscisses en A. Calculer les coordonnées de A.
4. Démontrer que les points K, L et H sont alignés.
5. Calculer les coordonnées du point d'intersection de (d2) et (d3).


Sagot :

Réponse :

Exercice 3

Dans un repère du plan soient les point A(3 ; 4), B(1 ; -1) et C(6 ; -2).

1. Déterminer une équation cartésienne de la droite (AB).

soit M(x ; y) tel que les vecteurs AM et AB soient colinéaires

vec(AM) = (x - 3 ; y - 4)

vec(AB) = (- 2 ; - 5)

det(vec(AM) ; vec(AB)) = XY' - X'Y = 0   ⇔ (x - 3)*(- 5) - (- 2)*(y - 4) = 0

⇔ - 5 x + 15 + 2 y - 8 = 0  ⇔ - 5 x + 2 y + 7 = 0

2. Déterminer une équation cartésienne de la droite (d) passant par I milieu de [AC] et parallèle à (AB).

I milieu de (AC)  ⇒ I((6+3)/2 ; (- 2+4)/2) = I(9/2 ; 1)

(d) // (AB)  ⇔ ont même vecteurs directeurs

  donc  - 5 x + 2 y + c = 0

I(9/2 ; 1) ∈ (d)  ⇔ - 5*9/2 + 2*1 + c = 0  ⇔ - 41/2 + c = 0  ⇔ c = 41/2

donc  - 5 x + 2 y + 41/2 = 0  ⇔ - 10 x + 4 y + 41 = 0

3. Soit (d’) la droite d’équation (d’) : -16x + y + 98 = 0.

Prouver que (d’) et (AB) sont sécantes.

soit  vec(u) = (- 1 ; - 16)  vecteur directeur de (d')

       vec(v) = (- 2 ; - 5)      /                 /         /   (AB)

det(vec(u) ; vec(v)) = - 1*(- 5) - (-2)*(-16) = 5 - 32 = - 27 ≠ 0

donc les vecteurs directeurs u et v  ne sont pas colinéaires

donc les droites (d') et (AB) ne sont pas //  donc elles sont sécantes

Calculer les coordonnées de ce point d’intersection, noté D.

(d') :  -16x + y + 98 = 0.  ⇔ y = 16 x - 98

(AB) : - 5 x + 2 y + 7 = 0  ⇔ y = 5/2) x - 7/2

16 x - 98 = 5/2) x - 7/2  ⇔ 16 x - 5/2 = - 7/2 + 98  ⇔ 27/2)x = 189/2

x = 189/27  = 7   et  y = 5/2)*7 - 7/2 = 14

donc les coordonnées de  D sont : (7 ; 14)

Explications étape par étape :

Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.