Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Bonjour est-ce que quelqu'un veut bien m'aider s'il vous plais ?
merci infiniment si c'est le cas

Exercice 3
Dans un repère du plan soient les point A(3 ; 4), B(1 ; -1) et C(6 ; -2).
1. Déterminer une équation cartésienne de la droite (AB).
2. Déterminer une équation cartésienne de la droite (d) passant par I milieu de [AC] et parallèle à
(AB).
3. Soit (d’) la droite d’équation (d’) : -16x + y + 98 = 0.
Prouver que (d’) et (AB) sont sécantes.
Calculer les coordonnées de ce point d’intersection, noté D.

Exercice 4
1. Dans le repère donné en annexe, tracer, en justifiant, la droite (d1) d'équation
y = 3x – 4.
2. Soit (d2) la droite parallèle à (d1) passant par H(-2 ; -3).
a. Déterminer l'équation de (d2). Justifier.
b. Tracer (d2) dans le repère.
3. Soit (d3) la droite passant par K(-6 ; 5) et L(-3 ; -1).
a. Déterminer par le calcul l'équation de (d3). Justifier.
b. Tracer (d3) dans le repère.
c. (d3) coupe l'axe des abscisses en A. Calculer les coordonnées de A.
4. Démontrer que les points K, L et H sont alignés.
5. Calculer les coordonnées du point d'intersection de (d2) et (d3).


Sagot :

Réponse :

Exercice 3

Dans un repère du plan soient les point A(3 ; 4), B(1 ; -1) et C(6 ; -2).

1. Déterminer une équation cartésienne de la droite (AB).

soit M(x ; y) tel que les vecteurs AM et AB soient colinéaires

vec(AM) = (x - 3 ; y - 4)

vec(AB) = (- 2 ; - 5)

det(vec(AM) ; vec(AB)) = XY' - X'Y = 0   ⇔ (x - 3)*(- 5) - (- 2)*(y - 4) = 0

⇔ - 5 x + 15 + 2 y - 8 = 0  ⇔ - 5 x + 2 y + 7 = 0

2. Déterminer une équation cartésienne de la droite (d) passant par I milieu de [AC] et parallèle à (AB).

I milieu de (AC)  ⇒ I((6+3)/2 ; (- 2+4)/2) = I(9/2 ; 1)

(d) // (AB)  ⇔ ont même vecteurs directeurs

  donc  - 5 x + 2 y + c = 0

I(9/2 ; 1) ∈ (d)  ⇔ - 5*9/2 + 2*1 + c = 0  ⇔ - 41/2 + c = 0  ⇔ c = 41/2

donc  - 5 x + 2 y + 41/2 = 0  ⇔ - 10 x + 4 y + 41 = 0

3. Soit (d’) la droite d’équation (d’) : -16x + y + 98 = 0.

Prouver que (d’) et (AB) sont sécantes.

soit  vec(u) = (- 1 ; - 16)  vecteur directeur de (d')

       vec(v) = (- 2 ; - 5)      /                 /         /   (AB)

det(vec(u) ; vec(v)) = - 1*(- 5) - (-2)*(-16) = 5 - 32 = - 27 ≠ 0

donc les vecteurs directeurs u et v  ne sont pas colinéaires

donc les droites (d') et (AB) ne sont pas //  donc elles sont sécantes

Calculer les coordonnées de ce point d’intersection, noté D.

(d') :  -16x + y + 98 = 0.  ⇔ y = 16 x - 98

(AB) : - 5 x + 2 y + 7 = 0  ⇔ y = 5/2) x - 7/2

16 x - 98 = 5/2) x - 7/2  ⇔ 16 x - 5/2 = - 7/2 + 98  ⇔ 27/2)x = 189/2

x = 189/27  = 7   et  y = 5/2)*7 - 7/2 = 14

donc les coordonnées de  D sont : (7 ; 14)

Explications étape par étape :

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.