Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.



La longueur d'un rectangle mesure 9 mètres de plus que sa largeur. Si on augmente sa longueur de 3 mètres et si on diminue sa largeur de 5 mètres, son aire diminue de 116 m²
Quelles sont les dimensions de ce rectangle?

Sagot :

Bonjour,

l = x

L = x+9

aire:

x(x+9) = x² +9x

   

l = x-5

L = x+9+3

Aire = (x-5) ( x+12)

= x²  +12x -5x -60

= x² +7x -60

x²  +7x -60 = x² +9x - 116

116 -60 =  x²-x² +9x -7x

56=  2x

2x = 56

x= 56/2

x = 28

l= 28 m

L= 28+9 = 37 m

Réponse :

le rectangle initial mesurait 37 sur 28 mètres ;

   le rectangle final mesure 40 sur 23 m

Explications étape par étape :

■ rectangle initial :

   Longueur = L ; largeur = L-9 ;

   Aire = L * (L-9) = L² - 9L

■ rectangle final :

   Longueur majorée = L+3 ; largeur minorée = L - 9 - 5 = L - 14 ;

   nouvelle Aire = (L+3)(L-14) = L² - 11L - 42

■ reste à résoudre cette équation :

   L² - 9L -116 = L² - 11L - 42

          2L        = 116 - 42

          2L        = 74

            L        = 37 mètres !      

■ conclusion :

   le rectangle initial mesurait 37 sur 28 mètres ( Aire = 1036 m² ) ;

   le rectangle final mesure 40 sur 23 m ( Aire = 920 m² ) .

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.