Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Dans un repère orthonormé (0,i,j), on considère les points A(6; 5), B(-2; 7), C(4; -3) et D(-2;-3). Soit I le milieu de [BC]. Montrer que les points A, B, C et D sont sur un cercle de centre 1.​

Sagot :

Réponse :

Bonjour, si tu as placé les points A, B, C et D sur un repère orthonormé et le point I milieu de [BC] tu peux conjecturer que les points A, B, C, et D sont cocycliques. Et I est le centre du cercle.  

Explications étape par étape :

Coordonnées de I:

xI=(xB+xC)/2=1 et yI=(yB+yC)/2=2   donc I(1; 2)

Caculons BI

BI=V[(xB-xI)²+(yB-yI)²]=V[(-2-1)²+(7-2)²]=V(34)

IC=IB=V34

Vérifions que IA=ID=IB

IA=V[(6-1)²+(5-2)²]=V34

de même calcule ID =V34

Les points A, B, C, et D appartiennent au cercle de centre I(1; 2) et de rayon V34  

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.