Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour, je dois faire un exposé sur le nombre d'or de Fibonacci, j'ai du mal à comprendre pouvez vous m'aider svp

Sagot :

prends les nombres 1 et 2

puis calcule la somme et gardes les deux derniers nombres : 2, 3

et recommences...

Tu obtiens les entiers :

1,2,3,5,8,13,.... qui  forment une "suite de Fibonnacci" (pas "la suite", car cela dépend du choix des 2 premiers nombres)

maintnant calcule les fractions 2/1 3/2 5/3 8/5 13/8, etc..; et observe les resulats obtenus. Ils se rapprochent inexorablement d'un' valeur qui est l'inverse du nombre d'or, phi.

 

Tu peux illustrer cela par un paradoxe de découpage :

le carré de coté 8 découpé en 4 morceaux : 2 trapezes rectangles de bases 3 et 5 et deux triangles rectangles de cotés 8 et 3. On peut semble t il reconstituer avec ces 4 morceaux un rectangle de 13 par 5

Mais il y a un probleme : le carré avait une aire de 64 le rectangle a une aire de 65 !!!

ce paradoxe montre que la reconstitution du rectangle n'est pas juste : les hypoténuses des triangles et les cotés des trapézes n'ont pas les mêmes inclinaisons, a très peu prés...

 

 

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.