Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
Réponse :
1) a) justifier que A(1/2 ; 2) et B(5 ; 1/5)
A(1/2 ; yA) et B(5 ; yB)
yA = f(1/2) = 1/1/2 = 2
yB = f(5) = 1/5
donc A(1/2 ; 2) et B(5 ; 1/5)
c) calculer les coordonnées de I
I milieu de (AB) ⇒ I((5 +1/2)/2 ; (1/5 + 5)/2)) = (11/4 ; 26/10)
2) a) prouver que l'équation de TA est y = - 4 x + 4 et que celle de TB est y = - 1/25) x + 2/5
f '(x) = - 1/x²
f '(1/2) = - 1/1/4 = - 4
f(1/2) = 2
y = f(1/2) + f '(1/2)(x - 1/2) = 2 - 4(x - 1/2) = 2 - 4 x + 2 = - 4 x + 4
donc l'équation de la tangente TA est : y = - 4 x + 4
f '(5) = - 1/25
f(5) = 1/5
y = f(5) + f '(5)(x - 5) = 1/5 - 1/25(x - 5) = 1/5 - 1/25) x + 1/5 = - 1/25) x + 2/5
donc l'équation de la tangente TB est : y = - 1/25) x + 2/5
c) déterminer les coordonnées du point J, intersection des deux droites TA et TB
on écrit ; - 4 x + 4 = - 1/25) x + 2/5 ⇔ - 4 x + 1/25) x = 2/5 - 4
⇔ - 99/25) x = - 18/5 ⇔ x = 90/99 = 10/11
y = - 4*10/11 + 4 = 4/11
J(10/11 ; 4/11)
3) a) trouver l'équation réduite de la droite (IJ)
I(11/4 ; 26/10) et J(10/11 ; 4/11)
y = a x + b
a : coefficient directeur = (4/11 - 26/10)/(10/11 - 11/4)
= (40/110 - 286/110)/(40 - 121)/44
= - 246/110/-81/44
= - 246 * 44/110*(-81)
a = 492/405
y = 492/405) x + b
4/11 = 492/405)* 10/11 + b ⇒ b = 4/11 - 984/891 = 3564
Explications étape par étape :
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.