Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Exercice 8. Un problème d'âge :
Une personne a quatre fois l'âge de son fils. Mais 18 ans plus tard, elle aura deux fois l'âge de son fils.
Le but est de déterminer l'âge de cette personne et celui de son fils.
1°) Notons x l'âge de cette personne et y l'âge de son fils.
Déterminer un système linéaire de deux équations à deux inconnues traduisant le problème.
2°) Résoudre ce système par substitution, puis conclure.
Bonjour j’ai besoin d’aide pour la question 1


Exercice 8 Un Problème Dâge Une Personne A Quatre Fois Lâge De Son Fils Mais 18 Ans Plus Tard Elle Aura Deux Fois Lâge De Son Fils Le But Est De Déterminer Lâge class=

Sagot :

Réponse:

1;

[tex]x = 4y \\ x = 2y + 18[/tex]

Les 2 équations...

2;

on transporte l'équation 1 dans l'équation 2

[tex]4y = 2y + 18 \\ 4y - 2y = 18 \\ 2y = 18 \\ y = 9[/tex]

l'âge Du fils est 9 ans

l'âge de la personne est

[tex]x = 4y \\ x = 9 \times 4 \\ x = 36[/tex]

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.