Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

On considère la suit U définie sur N par:

Un = Intégrale de n à n+1 de (fx) dx.

Montrer que, pour tout entier n > ou = à 1 :

f(n+1) < ou = à Un < ou = à f(n)



Sagot :

Il faut absolument avoir que f est décroissante. Soit x appartenant a [n;n+1] f est décroissante, donc f(n+1)
Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.