Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
Bonsoir,
- Réponse :
[tex] \boxed{ \bold {\Bigg ( \frac{ \blue{2x + 3}}{ \red{x}}\Bigg )' = - \frac{ 3}{ {x}^{2} } }} [/tex]
[tex] \\ [/tex]
- Explications :
▪️Nous avons la formule de dérivation suivante:
[tex] \displaystyle{ \Bigg ( \frac{ \blue{u}}{ \red{v}}\Bigg )'} = \frac{ \green{u'} \times \red{v} - \blue{u} \times \orange{v'}}{ { \red{v}}^{2} } [/tex]
[tex] \\ [/tex]
▪️Nous l'utilisons pour notre expression en sachant que :
[tex] \\ [/tex]
- [tex] \blue{u} [/tex] = 2x + 3
- [tex] \green{u'} [/tex] = 2
- [tex] \red{v} [/tex] = x
- [tex] \orange{v'} [/tex] = 1
[tex] \\ [/tex]
↣ On obtient donc :
[tex]\displaystyle{ \Bigg ( \frac{ \blue{2x + 3}}{ \red{x}}\Bigg )'} = \frac{ \green{2} \times \red{x} - \blue{(2x + 3)} \times \orange{1}}{ { \red{x}}^{2} } \\ \\ \implies\Bigg( \frac{ \blue{2x + 3}}{ \red{x}} \Bigg)'= \frac{2x - (2x + 3)}{{x}^{2}} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \implies\Bigg( \frac{ \blue{2x + 3}}{ \red{x}} \Bigg)'= \frac{2x - 2x - 3}{{x}^{2}} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \implies { \boxed{\Bigg(\frac{ \blue{2x + 3}}{ \red{x}} \Bigg)'= - \frac{3}{ {x}^{2} } }} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
Bonne soirée
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.