Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Bonjour, est ce possible de m’aider pour un exos de mon DM !

On considère les droites d1 d'équation : 2x + y - 5 = 0 et d₂ d'équation -1/2x + y + 5/2 =0.

1. Justifier que ces deux droites sont sécantes.

2. Déterminer les coordonnées de leur point d'intersection B.

3. Montrer que le point A(2; 1) appartient à d1 et que le point D(1 ;-2) appartient à d₂.

4. En déduire que les droites d1 et d₂ sont
perpendiculaires.


Sagot :

Réponse :

Bonjour

Explications étape par étape :

1)

Vecteur directeur de d1  : u(-1;2)

et de d2 :  (-1;-1/2)  soit  v(1;1/2)

2 vecteurs u(x;y) et v(x';y') sont colinéaires <==> xy'-x'y=0

On applique à u et v :

(-1)(1/2)-(2)(1)=-1/2-2=-5/2 ≠ 0

Donc u et v pas colinéaires donc d1 et d2 sécantes.

Tu peux aussi calculer le coeff directeur :

de d1 : y=-2x+5 donc coeff directeur=-2

de d2 : y=(1/2)x-5/2

-2 ≠ -1/2 donc d1 et d2 sécantes.

2)

On résout :

(1/2)x-5/2=-2x+5

(1/2)x+2x=5+5/2

(5/2)x=15/2

x=3

y=-2(3)+5=-1

B(3;-1)

3)

Pour A :

On reporte (2;1) dans l'équa de d1 :

2(2)+1-5=4+1-5=0

Donc A est sur d1.
Pour D :

-(1/2)(1)-2+5/2=-1/2-4/2+5/2=0

Donc D sur d2.

4)

vect AB(3-2;-1-1)

AB(1;-2)

DB(3-1;-1-(-2))

DB(2;1)

2 vecteurs u(x;y) et v(x';y') sont orthogonaux <==> xx'+yy'=0.

On applique à AB et DB :

(1)(2)+(-2)(1)=2-2=0

Donc les vect AB et DB sont orthogonaux donc :

d1 ⊥ d2

View image Bernie76

Réponse :

Explications étape par étape :

Bonjour,

Voici la réponse en pièce-jointe !

En espérant t'avoir aidé, n'hésite pas à poser des questions si besoin.

View image olivierronat
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.