Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonsoir! Je dois aider mon frère pour un devoir, mais j'ai aussi des difficultés aurait vous une idée?

On considère un triangle équilatéral LNM de côté [tex]x[/tex].
La hauteur issue de L coupe [NM] en O.
1. Calculer LO en fonction de [tex]x[/tex].
2. En déduire l’aire L([tex]x[/tex]) du triangle LNM en fonction de [tex]x[/tex].
3. Calculer l’aire du triangle LNM lorsque [tex]x[/tex] = 8 cm. Vous donnerez la valeur exacte, puis une valeur approchée à [tex]0,1cm^{2}[/tex] près.
4. Cerise affirme que pour que l’aire du triangle LNM soit égale à [tex]2\sqrt{3}cm^{2}[/tex], il faut que [tex]x[/tex] = [tex]2\sqrt{2} cm[/tex] . A-t-elle raison?

Merci d'avance!!

Sagot :

Réponse:

Bonjour

Explications étape par étape:

cette correction vous a t'elle été utile ?

View image sinikmandengue
View image sinikmandengue
tommus

Question 1

Puisque LNM est un triangle équilatéral, alors la hauteur issue de L coupe [NM] en O et O est au milieu du segment [NM].

Ainsi, [tex]NO = \dfrac{x}{2}[/tex].

De plus, puisque [NM] est la hauteur issue de L, alors le triangle MLO est rectangle en O. Calculons LO en utilisant le théorème de Pythagore :

[tex]MO^2+LO^2=LM^2\\\left( \dfrac{x}{2}\right)^2 + LO^2 = x^2\\\dfrac{x^2}{4} + LO^2 = x^2\\LO^2=x^2 - \dfrac{x^2}{4} \\LO^2 = \dfrac{4x^2}{4} - \dfrac{x^2}{4} \\LO^2=\dfrac{3x^2}{4} \\LO^2=\dfrac{3}{4} x^2\\LO = \sqrt{\dfrac{3}{4} x^2}\\LO = \dfrac{\sqrt{3}}{2} x[/tex]

Question 2

[tex]L(x)=\dfrac{b \times h}{2} = \dfrac{MN \times LO}{2} =\dfrac{x \times \dfrac{\sqrt{3}}{2}x}{2} = \dfrac{\dfrac{\sqrt{3}x^2}{2}}{2} = \dfrac{\sqrt{3}x^2}{4}[/tex].

Question 3

Si [tex]x=8[/tex], alors [tex]L(8)=\dfrac{\sqrt{3} \times 8^2}4 \approx 27,7[/tex] cm².

Question 4

Si [tex]x=2 \sqrt{2}[/tex] :

[tex]L(2 \sqrt{2})=\dfrac{\sqrt{3} \times (2 \sqrt{2})^2}{4}\\L(2 \sqrt{2})=\dfrac{\sqrt{3} \times 2^2 \times \sqrt{2}^2}{4}\\L(2 \sqrt{2})=\dfrac{\sqrt{3} \times 4 \times 2}{4}\\L(2 \sqrt{2})=\sqrt{3} \times 2\\L(2 \sqrt{2})=2 \sqrt{3}[/tex]

Cerise a donc raison !

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.