Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour j'ai besoin d'aide pour un exercice en maths en première sur les fonctions exponentielles.

Bonjour Jai Besoin Daide Pour Un Exercice En Maths En Première Sur Les Fonctions Exponentielles class=

Sagot :

Réponse :

Explications étape par étape :

je suppose que tu sais faire la question 2 (utilise un tableur)

Pour la question 3, il suffit de remarquer que [tex]\frac{n}{n!} = \frac{1 }{(n-1)!}[/tex]

puisque n ! = 1 × 2 × 3 … × (n - 1) × n = (n - 1) ! × n

Donc la dérivée de  [tex]\Sigma(1+ \frac{x}{1!}+. . . +\frac{x^n}{n!} + . . . )[/tex] est [tex]\Sigma( \frac{1}{1!}+. . . +\frac{nx^{n-1}}{n!} + . . . )[/tex]

Or 1 ! = 1  donc [tex]\Sigma( \frac{1}{1!}+. . . +\frac{nx^{n-1}}{n!} + . . . )=\Sigma( {1+ . . +\frac{x^{n-1}}{(n-1)!} + . . . )[/tex] donc la dérivée de exp(x) est exp(x)

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.