Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Trouvez des réponses rapides et fiables à vos questions grâce à notre communauté dévouée d'experts. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Bonjour j'ai besoin d'aide pour un exercice en maths en première sur les fonctions exponentielles.

Bonjour Jai Besoin Daide Pour Un Exercice En Maths En Première Sur Les Fonctions Exponentielles class=

Sagot :

Réponse :

Explications étape par étape :

je suppose que tu sais faire la question 2 (utilise un tableur)

Pour la question 3, il suffit de remarquer que [tex]\frac{n}{n!} = \frac{1 }{(n-1)!}[/tex]

puisque n ! = 1 × 2 × 3 … × (n - 1) × n = (n - 1) ! × n

Donc la dérivée de  [tex]\Sigma(1+ \frac{x}{1!}+. . . +\frac{x^n}{n!} + . . . )[/tex] est [tex]\Sigma( \frac{1}{1!}+. . . +\frac{nx^{n-1}}{n!} + . . . )[/tex]

Or 1 ! = 1  donc [tex]\Sigma( \frac{1}{1!}+. . . +\frac{nx^{n-1}}{n!} + . . . )=\Sigma( {1+ . . +\frac{x^{n-1}}{(n-1)!} + . . . )[/tex] donc la dérivée de exp(x) est exp(x)

Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.