Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

bonjour tout le monde je veut un coup de main dans se exercice, et merci

Bonjour Tout Le Monde Je Veut Un Coup De Main Dans Se Exercice Et Merci class=

Sagot :

Réponse :

Explications étape par étape :

Bonjour,

Voici la réponse en pièce-jointe !

En espérant t'avoir aidé, n'hésite pas à poser des questions si besoin.

View image olivierronat
View image olivierronat

Bonsoir, voici la réponse à ton exercice :

· Points d'intersection avec l'axe des abscisses, racines de l'expression

Lorsqu'on te demande les points d'intersection de la courbe sur l'axe des abscisses, on te demande de chercher les racines de la fonction qu'on te donne. On reconnaît g(x) comme une équation du second degré, donc on va chercher les racines, c'est-à-dire lorsque g(x) = 0.

· On a donc :

[tex]x^2 - 3x + \frac{5}{4} = 0[/tex]

⇔ [tex]4x^2 - 12x + 5 = 0[/tex] # J'ai simplifié l'expression en multipliant par 4 chaque côté

· On utilise la formule du delta pour les équations du 2nd degré, tel que :

[tex]\Delta = b^2 - 4ac[/tex]

[tex]\Delta = (-12)^2 - 4\times4\times5[/tex]

[tex]\Delta = 64 = 8^2[/tex]

· Puis on cherche les racines avec la formule :

[tex]x = \frac{-b \ \± \ \sqrt{\Delta}}{2a}[/tex]

[tex]x_1 = \frac{12 + 8}{2\times4} = \frac{20}{8} = 2,5 \\x_2 = \frac{12 - 8}{2\times4} = 0,5[/tex]

→ Donc les points d'intersection de la courbe avec l'axe des abscisses sont 2,5 et 0,5.

· Simplification de l'expression

On nous donne :

[tex]g(x) = (x - \frac{3}{2})^2 - 1[/tex]

[tex]= (\frac{2x - 3}{2})^2 - 1[/tex]

[tex]= \frac{(2x - 3)^2}{4} - 1[/tex]

[tex]= \frac{4x^2 - 12x + 9}{4} - 1[/tex]

[tex]= x^2 - 3x + \frac{9}{4} - 1[/tex]

[tex]= x^2 - 3x + \frac{5}{4}[/tex]

→ Et on retrouve la fonction [tex]g(x)[/tex] !

· Variations d'une fonction

Pour déterminer les variations d'une fonction, il faut d'abord dériver celle-ci. On a donc :

[tex]g'(x) = 2x - 3[/tex]

(Le tableau de variation est envoyé en photo)

· Inéquation g(x) ≥ 0

Je ne sais pas le résoudre graphiquement, donc on va le faire littéralement, tel que :

[tex]g(x) \geq 0[/tex]

⇔ [tex]4x^2 - 12x + 5 \geq 0[/tex]

⇔ [tex](2x - 1)(2x - 5) \geq 0[/tex]

⇔ [tex]2x - 1 \geq 0 \ ou \ 2x - 5 \geq 0[/tex]

⇔ [tex]x \leq \frac{1}{2} \ ou \ x \geq \frac{5}{2}[/tex]

→ On peut remarquer que ce sont nos racines trouvées précédemment.

· Solutions de l'équation g(x) = m

Je ne sais pas le résoudre graphiquement, donc on va le faire littéralement, tel que :

[tex]g(x) = m[/tex]

⇔ [tex]4x^2 - 12x + 5 = m[/tex]

⇔ [tex]4x^2 - 12x + 5 - m = 0[/tex]

[tex]\Delta = (-12)^2 - 4\times4\times(5 -m)[/tex]

[tex]= 144 - 80-16m[/tex]

[tex]= 64 - 16m[/tex]

Si m = 4, l'équation admet une unique solution,

Si m > 4, l'équation n'admet pas de solutions réelles,

Si m < 4, l'équation admet deux solutions réelles distinctes.

En espérant t'avoir aidé au maximum !

View image Sapin2Paques
Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.