Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Notre plateforme vous connecte à des professionnels prêts à fournir des réponses précises à toutes vos questions. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjour j’aurais besoin d’aide svp pour répondre a cette question
On considère la suite (un) définie par u. = 1, et pour tout entier naturel n, un+1=un+n-2.
1. Calculer u₁, U₂ et u3.
2. On définit la suite (vn), pour tout entier naturel n, par vn = -2un + 3n-21/2
a) Calculer vo, V1, V₂.
b) Montrer que la suite (v₁) est une suite geométrique de raison q=1/3
c) Donner l'expression de vn, en fonction de n.



Sagot :

Réponse :

Explications étape par étape :

■ 1°) étude de la suite (Un) :

   Uo = 1 ; Un+1 = Un + n - 2

   donc U1 = 0 ; U2 = 0 ; U3 = 1 ; U4 = 3 ; U5 = 6 ; ...

   d' où la suite (Un) est croissante .

■ 2°) étude de la suite (Vn) :

   Vn = ?

   donc Vo = ... ; V1 = ... ; V2 = ... ; V3 = ... ; V4 = ...

■ 2b) démonstration par récurrence :

          Vn+1 = ...

                   = ... * 1/3

                   = 1/3 * Vn .

■ 2c) Vn = Vo * (1/3)^n

              = Vo / (3^n) .

        ( remplacer Vo par sa valeur ! )

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.