Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
Pour DF.DC :
[tex]\overrightarrow{DF}(\frac{DC}{2} , EF) \rightarrow \overrightarrow{DF}(2 , 3)\\\overrightarrow{DC}(DC, 0) \rightarrow \overrightarrow{DC}(4 , 0)\\\\\overrightarrow{DF}.\overrightarrow{DC} = x_{\overrightarrow{DF}}*x_{\overrightarrow{DC}}+y_{\overrightarrow{DF}}*y_{\overrightarrow{DC}}=2*4+3*0\\\overrightarrow{DF}.\overrightarrow{DC} = 8[/tex]
Pour DA.CB :
[tex]\overrightarrow{DA}(0 , DA) \rightarrow \overrightarrow{DA}(0, 4)\\\overrightarrow{CB}(0,CB) \rightarrow \overrightarrow{CB}(0, 4)\\\\\overrightarrow{DA}.\overrightarrow{CB} = x_{\overrightarrow{DA}}*x_{\overrightarrow{CB}}+y_{\overrightarrow{DA}}*y_{\overrightarrow{CB}}=0*0+4*4\\\overrightarrow{DA}.\overrightarrow{CB} = 16[/tex]
Pour FD.FC :
[tex]\overrightarrow{FD}(-\frac{DC}{2} , -EF) \rightarrow \overrightarrow{FD}(-2, -3)\\\overrightarrow{FC}(\frac{DC}{2},-EF) \rightarrow \overrightarrow{FC}(2, -3)\\\\\overrightarrow{FD}.\overrightarrow{FC} = x_{\overrightarrow{FD}}*x_{\overrightarrow{FC}}+y_{\overrightarrow{FD}}*y_{\overrightarrow{FC}}=(2*-2)+(-3*-3)\\\overrightarrow{FD}.\overrightarrow{FC} = 5[/tex]
Pour DF.DB :
[tex]\overrightarrow{DF}(\frac{DC}{2} , EF) \rightarrow \overrightarrow{DF}(2, 3)\\\overrightarrow{DB}(DC,-CB) \rightarrow \overrightarrow{DB}(4, -4)\\\\\overrightarrow{DF}.\overrightarrow{DB} = x_{\overrightarrow{DF}}*x_{\overrightarrow{DB}}+y_{\overrightarrow{DF}}*y_{\overrightarrow{DB}}=(2*4)+(3*-4)\\\overrightarrow{DF}.\overrightarrow{DB} = -4[/tex]
Réponse :
déterminer le produit scalaire des vecteurs suivants :
vec(DF).vec(DC) projeté orthogonal du vec(DF) sur la droite (DC)
les vecteurs DE et DC sont colinéaires de même sens donc ;
vec(DF).vec(DC) = vec(DE).vec(DC) = DE x DC = 2 x 4 = 8
vec(DA).vec(CB) les vecteurs DA et CB sont colinéaires de même sens
vec(DA).vec(CB) = DA x CB = 4 x 4 = 16
vec(FD).vec(FC) = (FE + ED)(FE + EC)
= FE² + vec(FE).vec(EC) + vec(ED).vec(FE) + vec(ED).vec(EC)
vec(FE).vec(EC) = 0 car les droites (FE) et (EC) sont perpendiculaires
vec(ED).vec(FE) = 0 / / / / / /
vec(ED).vec(EC) = - ED x EC = - 4 car les vecteurs ED et EC sont colinéaires de sens contraires
donc vec(FD).vec(FC) = 3² - 4 = 5
Explications étape par étape :
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.