Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
Bonjour,
Question 1 :
[tex]\overrightarrow{AK} = \sqrt{(x_K-x_A)^2 + (y_K - y_A)^2} = \sqrt{(3-4)^2 + (-1 - 3)^2} = \sqrt{17}[/tex]
[tex]\overrightarrow{BK} = \sqrt{(x_K-x_B)^2 + (y_K - y_B)^2} = \sqrt{(3+1)^2 + (-1 - 0)^2} = \sqrt{17}[/tex]
Question 2 :
Le point K ∈ à la médiatrice de [AB] si et seulement si :
[tex]\overrightarrow{AK} = \overrightarrow{BK}[/tex]
donc K ∈ à la médiatrice de [AB] .
Question 3 :
[tex]\overrightarrow{AL} = \sqrt{(x_L-x_A)^2 + (y_L - y_A)^2} = \sqrt{(\frac{1}{2} -4)^2+(3-3)^2 } = 3,5[/tex]
[tex]\overrightarrow{BL} = \sqrt{(x_L-x_B)^2 + (y_L - y_B)^2} = \sqrt{(\frac{1}{2} +1)^2+(3-0)^2 } \approx 3,35[/tex]
[tex]\overrightarrow{AL} \neq \overrightarrow{BL}[/tex]
Donc le point L ∉ à la médiatrice de [AB]
Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.