Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

BJR, je bloque dessu… c’est pour dimanche 18h.
merci d’avance!

Les résultats seront arrondis au millième.
On compte en France métropolitaine environ 9 % de personnes souffrant d'une déficience auditive.
On sélectionne 52 personnes au hasard en France métropolitaine pour un sondage au sujet d'un
test auditif. On considère que le choix de chaque individu est indépendant.
Soit X la variable aléatoire comptant le nombre de déficients auditif dans la sélection.
1. Déterminer la loi de probabilité de X. Justifier.
2. Calculer p(X= 4). Interpréter le résultat.
3. Calculer la probabilité que la sélection contienne au plus trois personnes souffrant de défi-
cience auditive.
4. Calculer la probabilité que la sélection contienne plus de 6 personnes souffrant de déficience
auditive.


Sagot :

Réponse :

1/ On a :

* [tex]X(\Omega)= [\![0;52]\!][/tex]
* On dispose de 52 personnes tirés au hasard en France.
* On a une probabilité de 0.09 d'avoir une personne souffrant d'une   déficience auditive

* On note X la variable aléatoire qui compte le nombre de déficients auditifs.
Donc on a une épreuve binomiale de Bernouilli :
[tex]X\hookrightarrow B(52;0.09)[/tex]

2/ En utilisant la définition d'une loi binomiale :

[tex]P(X=4)=\binom{52}{4}0.09^{4} (1-0.09)^{52-4}\\=\binom{52}{4}(0.09)^{4} (0.91)^{48}[/tex]
[tex]=\frac{71049069*91^{48}}{4000000*100^{48}} \approx0.192081[/tex]

3/ En Tle vous pouvez vous servir de la calculatrice pour le calculer, mais je préfère montrer comment le faire sans :
[tex]P(X\leq 3)= \displaystyle \sum_{k=0}^{3} P(X=k)=P(X=0)+P(X=1)+P(X=2)+P(X=3)[/tex]
Remarque : On peut aussi utiliser la formule du binome de Newton

[tex]=\binom{52}{0}(0.09)^{0} (0.91)^{52}+\binom{52}{1}(0.09)^{1} (0.91)^{51}+\binom{52}{2}(0.09)^{2} (0.91)^{50}[/tex]
[tex]+\binom{52}{3}(0.09)^{3} (0.91)^{49}[/tex]
[tex]\approx 0.07+0.038+0.096+0.159=0.359[/tex]

4/ En jouant avec les formules on a :

[tex]P(X > 6)=P(X\geq 7)= 1-P(X\leq 6)[/tex]
[tex]P(X > 6 ) = 1- \displaystyle \sum_{k=0}^{6}P(X=k) = 1- \displaystyle \sum_{k=0}^{3}P(X=k) -\displaystyle \sum_{k=4}^{6}P(X=k)[/tex]
[tex]=1-P(X\leq 3)-\displaystyle \sum_{k=4}^{6}P(X=k)[/tex]
[tex]=1-0.359 -P(X=4)-P(X=5)-P(X=6)[/tex]
[tex]0.641 -\binom{52}{4}(0.09)^{4} (0.91)^{48} -\binom{52}{5}(0.09)^{5} (0.91)^{47}- \binom{52}{6}(0.09)^{4} (0.91)^{46}[/tex]
[tex]=0.641-0.192-0.182-0.141[/tex]
[tex]= 0.122[/tex]

NB : Veuillez vérifier les calculs car tout à été fait de façon approximatif merci.

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.