Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjours, j’ai besoins d’aide pour mon dm de maths classe terminale maths complémentaires si quelqu’un pouvais m’aider merci

Bonjours Jai Besoins Daide Pour Mon Dm De Maths Classe Terminale Maths Complémentaires Si Quelquun Pouvais Maider Merci class=

Sagot :

Réponse :

1/a
[tex]v(t)=50t e^{-0.25t}[/tex]
[tex]v'(t)=50t(-0.25)e^{-0.25t} + 50e^{-0.25t}[/tex]
[tex]v'(t)=-12.5te^{-0.25t} +50e^{-0.25t}[/tex]
[tex]v'(t)=12.5 * (-t)e^{0.25t} + 12.5*4e^{-0.25t}[/tex]

[tex]\text{ factorisons par 12.5 :}[/tex]
[tex]v'(t)=12.5e^{-0.25t}(-t+4)[/tex]    
[tex]v'(t)=12.5e^{-0.25t}(4-t)[/tex]

1/b Etudions séparement les quotients de la dérivée :

[tex]\forall{t} \in \mathbb{R} \text{ on a : }12.5e^{-0.25t} \geq 0[/tex]
[tex]4-t\leq 0 \iff 4\leq t[/tex]
Donc :
[tex]\forall{t}\in [0;4][/tex]  [tex]v'(t)\geq 0[/tex]
[tex]\forall t \in [4;30] \text{ } v'(t)\leq 0[/tex]
On a donc :
[tex]\forall{t}\in [0;4] \text{ }v(t) \text{ est croissante}\\\forall{t}\in [4;30] \text{ }v(t) \text{ est decroissante}[/tex]

1/c
[tex]v(4)=50*4*e^{-0.25*4}=50*4*e^{-1}+200*e^{-1} \approx 73.6 > 2[/tex]
[tex]v(30)=50*30*e^{-0.25*30}=1500e^{-7.5} \approx 0.8 < 2[/tex]
[tex]\text{ selon 1b on a v strictement decroissante sur } [4;30][/tex]
[tex]\text{Donc selon le theoreme des valeurs intermediaires, l'equation }v(\alpha)=2 \\\text{ admet une solution } \alpha[/tex]
En utilisant la calculatrice :
[tex]\alpha \approx 3.606[/tex]
2/a
On a vu que v(4) est le maximum de la fonction v selon 1b car la variation de f nous montre que f est croissante jusqu'a x=4 et puis decroissante sur [4;30] donc a la 4eme semaine, les ventes sont au maximum.

pour savoir le nombre de jeu vendu il faut faire une somme des ventes jours precedents :
[tex]\displaystyle \sum_{k=0}^{4} v(k) =v(0)+v(1)+v(2)+v(3)+v(4)[/tex]
[tex]=0 + 50e^{-0.25} +100e^{-0.5} +150e^{-0.75}+200e^{-1}[/tex]
[tex]\approx 255.86 \approx256[/tex]
Il ne faut pas oublier de multiplier par 100 :
[tex]256*100=256000[/tex] exemplaires vendus

2/b
Donc selon 1c/ la boutique devra arreter de vendre a partir de la 4eme semaine.

3a/
Faisons une integrale par partie :

u = t                   u' = 1
v' = [tex]e^{-0.25t}[/tex]          v = [tex]-4e^{-0.25t}[/tex]

Donc :

[tex]G(t)=t(-4)e^{-0.25t} -1* \int -4e^{-0.25t}dt[/tex]
[tex]G(t)= t(-4)e^{-0.25t}-1*(-4)*\int e^{-0.25t}dt[/tex]
[tex]G(t)=t(-4)e^{-0.25t}+4*\frac{1}{-0.25}e^{-0.25t}[/tex]
[tex]G(t)=-4te^{-0.25t}-16e^{-0.25t}[/tex]
CQFD

3b/
[tex]\frac{1}{25} \int_{0}^{25}50te^{-0.25t}dt[/tex]
[tex]= [\frac{1}{25}*(-4*25e^{-6.25}-16e^{-6.25}) ]\\-[\frac{1}{25}*(-4*0e^{0}-16e^{0})][/tex]
[tex]=\frac{1}{25} (-\frac{116\sqrt[4]{e^3} }{e^7}+16)[/tex]
[tex]=\frac{16}{25} -\frac{116\sqrt[4]{e^3} }{25e^7}[/tex]
[tex]\approx0.63[/tex]

3c/
Ce resultat correspond aux ventes moyens des 25 premiers jours.

NB : les résultats sont a vérifiés car tout a été fait de tête

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.