Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjours, j’ai besoins d’aide pour mon dm de maths classe terminale maths complémentaires si quelqu’un pouvais m’aider merci

Bonjours Jai Besoins Daide Pour Mon Dm De Maths Classe Terminale Maths Complémentaires Si Quelquun Pouvais Maider Merci class=

Sagot :

Réponse :

1/a
[tex]v(t)=50t e^{-0.25t}[/tex]
[tex]v'(t)=50t(-0.25)e^{-0.25t} + 50e^{-0.25t}[/tex]
[tex]v'(t)=-12.5te^{-0.25t} +50e^{-0.25t}[/tex]
[tex]v'(t)=12.5 * (-t)e^{0.25t} + 12.5*4e^{-0.25t}[/tex]

[tex]\text{ factorisons par 12.5 :}[/tex]
[tex]v'(t)=12.5e^{-0.25t}(-t+4)[/tex]    
[tex]v'(t)=12.5e^{-0.25t}(4-t)[/tex]

1/b Etudions séparement les quotients de la dérivée :

[tex]\forall{t} \in \mathbb{R} \text{ on a : }12.5e^{-0.25t} \geq 0[/tex]
[tex]4-t\leq 0 \iff 4\leq t[/tex]
Donc :
[tex]\forall{t}\in [0;4][/tex]  [tex]v'(t)\geq 0[/tex]
[tex]\forall t \in [4;30] \text{ } v'(t)\leq 0[/tex]
On a donc :
[tex]\forall{t}\in [0;4] \text{ }v(t) \text{ est croissante}\\\forall{t}\in [4;30] \text{ }v(t) \text{ est decroissante}[/tex]

1/c
[tex]v(4)=50*4*e^{-0.25*4}=50*4*e^{-1}+200*e^{-1} \approx 73.6 > 2[/tex]
[tex]v(30)=50*30*e^{-0.25*30}=1500e^{-7.5} \approx 0.8 < 2[/tex]
[tex]\text{ selon 1b on a v strictement decroissante sur } [4;30][/tex]
[tex]\text{Donc selon le theoreme des valeurs intermediaires, l'equation }v(\alpha)=2 \\\text{ admet une solution } \alpha[/tex]
En utilisant la calculatrice :
[tex]\alpha \approx 3.606[/tex]
2/a
On a vu que v(4) est le maximum de la fonction v selon 1b car la variation de f nous montre que f est croissante jusqu'a x=4 et puis decroissante sur [4;30] donc a la 4eme semaine, les ventes sont au maximum.

pour savoir le nombre de jeu vendu il faut faire une somme des ventes jours precedents :
[tex]\displaystyle \sum_{k=0}^{4} v(k) =v(0)+v(1)+v(2)+v(3)+v(4)[/tex]
[tex]=0 + 50e^{-0.25} +100e^{-0.5} +150e^{-0.75}+200e^{-1}[/tex]
[tex]\approx 255.86 \approx256[/tex]
Il ne faut pas oublier de multiplier par 100 :
[tex]256*100=256000[/tex] exemplaires vendus

2/b
Donc selon 1c/ la boutique devra arreter de vendre a partir de la 4eme semaine.

3a/
Faisons une integrale par partie :

u = t                   u' = 1
v' = [tex]e^{-0.25t}[/tex]          v = [tex]-4e^{-0.25t}[/tex]

Donc :

[tex]G(t)=t(-4)e^{-0.25t} -1* \int -4e^{-0.25t}dt[/tex]
[tex]G(t)= t(-4)e^{-0.25t}-1*(-4)*\int e^{-0.25t}dt[/tex]
[tex]G(t)=t(-4)e^{-0.25t}+4*\frac{1}{-0.25}e^{-0.25t}[/tex]
[tex]G(t)=-4te^{-0.25t}-16e^{-0.25t}[/tex]
CQFD

3b/
[tex]\frac{1}{25} \int_{0}^{25}50te^{-0.25t}dt[/tex]
[tex]= [\frac{1}{25}*(-4*25e^{-6.25}-16e^{-6.25}) ]\\-[\frac{1}{25}*(-4*0e^{0}-16e^{0})][/tex]
[tex]=\frac{1}{25} (-\frac{116\sqrt[4]{e^3} }{e^7}+16)[/tex]
[tex]=\frac{16}{25} -\frac{116\sqrt[4]{e^3} }{25e^7}[/tex]
[tex]\approx0.63[/tex]

3c/
Ce resultat correspond aux ventes moyens des 25 premiers jours.

NB : les résultats sont a vérifiés car tout a été fait de tête

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.