Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

53.
Soient deux droites : dı:-2x +3y-5= 0 et d2: X+4y-14=0 1. Démontrer que les droites dy et d2 sont sécantes. 2. À l'aide d'un système, déterminer les coordonnées du point d'intersection des droites d, et d2.


bonjour vous pourrez m aider svp ? j ai besoin d aide​


Sagot :

Leafe

Bonjour,

Question 1 :

Pour que d1 et d2 soient sécantes il faut que leurs coefficients directeurs soient différents :

[tex]d_1 : -2x + 3y - 5 = 0[/tex]

    [tex]\Leftrightarrow 3y = 2x + 5[/tex]

    [tex]\Leftrightarrow y = \frac{2}{3}x + \frac{5}{3}[/tex]

[tex]d_2 : x + 4y - 14 = 0[/tex]

   [tex]\Leftrightarrow 4y = -x + 14[/tex]

   [tex]\Leftrightarrow y = -\frac{1}{4}x + \frac{14}{4}[/tex]

   [tex]\Leftrightarrow y = -\frac{1}{4}x + \frac{7}{2}[/tex]

On constante que m ≠ m' alors (d1) et (d2) sont sécantes.

Question 2 :

[tex]\begin{document}\[\left \{ \begin{array}{c @{}c} y =& \frac{2}{3}x + \frac{5}{3} \\ \\ y =& -\frac{1}{4}x + \frac{7}{2}\end{array}\right.\]\end{document}[/tex]

[tex]\frac{2}{3}x + \frac{5}{3} = -\frac{1}{4}x + \frac{7}{2}[/tex]

[tex]\frac{2}{3}x + \frac{1}{4}x = \frac{7}{2} - \frac{5}{3}[/tex]

[tex]\frac{11}{12}x = \frac{11}{6}[/tex]

[tex]x = \frac{11}{6} \times \frac{12}{11}[/tex]

[tex]x = 2[/tex]

On peut donc déterminer les coordonées de y :

[tex]y = \frac{2}{3} \times 2 + \frac{5}{3}[/tex]

[tex]y = \frac{4}{3} + \frac{5}{3}[/tex]

[tex]y = \frac{9}{3}[/tex]

[tex]y = 3[/tex]

Les coordonnées du point d'intersection des droites (d1) et (d2) sont (2;3)

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.