Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.


Soit la fonction f définie sur l'intervalle [-2;2] par : f(x)= x^4-x^3.

1) Conjecturer les variations et le minimum de la fonction f sur l'intervalle [-2:2] à l'aide de la
calculatrice.

2) a) Calculer la dérivée f‘ de f, puis dresser le tableau de signes de f'(x).

b) Dresser le tableau de variations de f.

c) Confirmer ou infirmer la conjecture émise à la question 1).


Sagot :

Réponse :

Explications étape par étape :

BONJOUR !

f(x) = x³(x-1) sur l' intervalle [ - 2 ; +2 ]

dérivée f ' (x) = 4x³ - 3x² = 4x²(x - 0,75)

   cette dérivée est nulle pour x = 0 ou x = 0,75 ;

   cette dérivée est POSITIVE pour x > 0,75 .

■ tableau :

     x -->  -2        -1         0                 0,75                  1       2

f ' (x) --> (-44) négative 0        -          0           positive   (20)

 f(x) -->  24         2        0      -27/256≈-0,1055       0       8