Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.


Soit la fonction f définie sur l'intervalle [-2;2] par : f(x)= x^4-x^3.

1) Conjecturer les variations et le minimum de la fonction f sur l'intervalle [-2:2] à l'aide de la
calculatrice.

2) a) Calculer la dérivée f‘ de f, puis dresser le tableau de signes de f'(x).

b) Dresser le tableau de variations de f.

c) Confirmer ou infirmer la conjecture émise à la question 1).


Sagot :

Réponse :

Explications étape par étape :

BONJOUR !

f(x) = x³(x-1) sur l' intervalle [ - 2 ; +2 ]

dérivée f ' (x) = 4x³ - 3x² = 4x²(x - 0,75)

   cette dérivée est nulle pour x = 0 ou x = 0,75 ;

   cette dérivée est POSITIVE pour x > 0,75 .

■ tableau :

     x -->  -2        -1         0                 0,75                  1       2

f ' (x) --> (-44) négative 0        -          0           positive   (20)

 f(x) -->  24         2        0      -27/256≈-0,1055       0       8

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.