Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour j'aurais besoin d'aide pour cet exercice ! Merci d'avance^^

On considère l'équation différentielle

(E) 2y' + 3y = 3x + 5

Montrer que cette équation admet une solution affine g : x---->mx + p , avec m et p réels que l'on déterminera .​


Sagot :

Réponse :

g(x) = x + 1 .

Explications étape par étape :

■ g(x) = mx + p donne g ' (x) = m

   d' où 2y' + 3y = 3x + 5 devient

            2m + 3mx + 3p = 3x + 5

    par identification : m = 1 .

     il reste 2 + 3p = 5

                        3p = 3

                           p = 1 .

   

■ conclusion : m = 1 et p = 1 .