Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour, voici une énoncé sur lequel je bloque depuis quelques temps, merci d’avance :
Dans un repère (O;1,]), pour tout réel m, on note Dm la droite d'équation :
Dm: (2m - 1)x - my + 3m +1 = 0.
1. Déterminer en fonction du réel m et lorsqu'ils existent, le coefficient directeur, l'ordonnée à l'origine
et un vecteur directeur de Dm.
2. Pour quelle valeur de m, Dest-elle parallèle à l'axe des abscisses? Donner alors une équation de Dm
3. Démontrer que, pour n'importe quelle valeur de m, les représentations graphiques des droites Dm
passent toutes par un même point.


Sagot :

Réponse :

Explications étape par étape :

■ 1°) (Dm) a pour équation :

   (2m-1)x - my + (3m+1) = 0   avec m ≠ 0

   donc my = (2m-1)x + (3m+1)

     d' où y = [ (2m-1)/m ] * x + (3m+1)/m

   conclusion : coeff directeur = (2m-1)/m

                        constante = (3m+1)/m .

■ 2°) on veut (2m-1)/m = 0 :

        donc m = 0,5 .

         alors y = 5 .

■ 3°) point commun K ?

        y = 5 donne (2m-1)x - 5m + (3m+1) = 0

                             (2m-1)x = 2m - 1

                                    xK = 1 .

        conclusion : K(1 ; 5) .

■ vérif avec x = 1 et y = 5 :

  2m-1 - 5m + 3m+1 = 0 vérifié ! ☺

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.