Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
f(x) = x² ( x² - 2 )
lim x² = oo
x --> oo
lim x² - 2 = oo
x --> oo
Donc comme produit de limites, lim f(x) = oo
x--> oo
Réponse :
Explications étape par étape :
■ f(x) = x²(x² - 2) définie sur IR .
■ pour x tendant vers -∞ ou +∞ :
Lim f(x) = ( Lim x² )² = +∞ .
■ dérivée f ' (x) :
f ' (x) = 4x³ - 4x = 4x(x² - 1)
cette dérivée est nulle pour x = -1 ; x = 0 ; ou x = +1 .
■ dérivée f " (x) :
f " (x) = 12x² - 4 = 4(3x² - 1)
cette dérivée est nulle pour x² = 1/3
donc pour x = -1/√3 ou x = +1/√3 .
■ tableau :
x --> -∞ -1 -1/√3 0 1/√3 1 +∞
f ' (x) -> négative 0 + 0 - 0 +
f(x) --> +∞ -1 -5/9 0 -5/9 -1 +∞
■ remarque : l' axe des ordonnées (Oy) est axe de symétrie !
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.