Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.
Sagot :
Bonsoir,
On a les vecteurs :
[tex]\overrightarrow{EF} \begin{pmatrix} x_{F}-x_{E}=x_{F}-(-4)=x_{F}+4 \\ y_{F}-y_{E}=2-3=-1 \end{pmatrix}$[/tex] et [tex]\overrightarrow{CD} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$[/tex]
Les droites [tex](EF)[/tex] et [tex](CD)[/tex] sont parallèles si et seulement si (abrégé SSI) les vecteurs [tex]\overrightarrow{EF} \begin{pmatrix} x_{F}+4 \\ -1 \end{pmatrix}$[/tex] et [tex]\overrightarrow{CD} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$[/tex] sont colinéaires.
SSI [tex]det(\overrightarrow{EF}, \overrightarrow{CD})=0\\[/tex]
SSI [tex](x_{F}+4)\times 3-(-2)\times (-1)=0[/tex]
SSI [tex]3x_{F}+12-2=0[/tex]
SSI [tex]3x_{F}=-10[/tex]
SSI [tex]x_{F}=-\dfrac{10}{3}[/tex]
Donc l'abscisse du point [tex]F[/tex] est [tex]x_{F}=-\dfrac{10}{3}[/tex] d'ordonnée [tex]2[/tex] telle que les droites [tex](EF)[/tex] et [tex](CD)[/tex] soient parallèles.
En espérant t'avoir aidé.
Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.