Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonsoir,
Quelqu’un peut m’aider pour mon devoir de maths, niveau 3eme.
Merciii

Bonsoir Quelquun Peut Maider Pour Mon Devoir De Maths Niveau 3eme Merciii class=

Sagot :

Réponse :

1) réduire   f(x) = x² - 7 x + 3 - (- x² + 2 x - 1)

                       = x² - 7 x + 3 + x² - 2 x + 1

                       = 2 x² - 9 x + 4

2) développer l'expression  A = (2 x - 3)²   identité remarquable

                                                  = 4 x² - 12 x + 9

3) développer et réduire

B = 2 x(x + 1) - 5(x - 3)

  = 2 x² + 2 x - 5 x + 15

  = 2 x² - 3 x + 15

C = 1 - (- 3 x + 1)(x - 2)

  = 1 - (- 3 x² + 6 x + x - 2)

  = 1 - (- 3 x² + 7 x - 2)

  = 3 x² + 7 x + 3

4) résoudre dans R les équations suivantes

3 x - 8 = 0  ⇔ 3 x = 8  ⇔ x = 8/3

4 t + 1 = 9 t - 6  ⇔ - 5 t = - 7  ⇔ t = 7/5  

(5 x - 8)(5 - x) = 0   produit nul

5 x - 8 = 0  ⇔ x = 8/5  ou 5 - x = 0  ⇔ x = 5

5) résoudre dans R l'inéquation  - 4 x + 5 < 3 x - 9

⇔ - 7 x < - 14   ⇔ 7 x > 14  ⇔ x > 14/7  ⇔ x > 2

⇔  l'ensemble des solutions  est :  S = ]2 ; + ∞[

6) résoudre les inéquations suivantes

(1 - 4 x)(x + 1) > 0

    x       - ∞             - 1              1/4               + ∞  

1 - 4 x                +                +      0        -

x + 1                   -        0       +                +

 P                      -         0       +      0       -

l'ensemble des solutions est  S = ]- 1 ; 1/4[

x² ≥ 16  ⇔ x² - 16 ≥ 0  ⇔ (x - 4)(x + 4) ≥ 0

   x      - ∞             - 4              4              + ∞

x - 4                -                -       0      +

x + 4               -        0      +               +  

 P                   +       0       -       0      +

l'ensemble des solutions  S = ]- ∞ ; - 4]U[4 ; + ∞[

algébriquement on peut écrire  x ≤ - 4 ou  x ≥ 4

Explications étape par étape :

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.