Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour très important aidez-moi s'il vous plaît !!!

Je te remercie ceux qui m'aident la réponse complète.

 

Exercice 1

On considère la figure ci-dessous :
On donne AB = 6 cm ; AC = 7,5 cm ; BC = 4,5 cm (sur le schéma, les dimensions ne sont pas respectées).

 

E est le point de [AB) tel que AE = 10 cm.
La parallèle à (AC) passant par B coupe (CE) en D.

 

1. Démontrer que le triangle ABC est rectangle en B.
2. Calculer la valeur arrondie au degré de la mesure de l'angle BEC.
3. Déterminer la mesure du segment [BD]. 

4.Calculer la longueur CE de trois manieres différentes.

 

 



Sagot :

Réciproque du théorème de Pythagore 

Si AC²=AB²+BC² alors le triangle est rectangle en B.

 

1. Démontrer que le triangle ABC est rectangle en B.

AC²=7.5² = 56.25

AB²+BC²=6²+4.5²= 56.25

Donc ABC est rectangle en B.

 

2. Calculer la valeur arrondie au degré de la mesure de l'angle BEC.

BEC est un triangle rectangle en B, on applique les règles de trigo :

TAN(BEC)=BC/BE

TAN(BEC)=4.5/4=1.125

BEC=tan^-1(1.125) => Voir le résultat à la calculatrice car j'en ai pas ...

 

3. Déterminer la mesure du segment [BD].

On utilise le théorème de thalès

EB/EA = BD/AC

EB * AC = EA * BD

4 * 7.5 / 10 = BD

BD = 3

 

4.Calculer la longueur CE de trois manieres différentes.

 1 - Par théorème de Pythagore dans le triangle BCE rectangle en B

       EC² = 4² + 4.5² = 36.25

       EC = 6.02

2 - Par trigo :

SIN ( BEC) = BC / EC

3 - Par thalès : ?

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.