Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

bonjour je vous demande de l'aide pour cet exercice que je ne comprend pas merci d'avance de me répondre

Soit f la fonction définie sur R par f(x) = (2x + 1)² – (x - 3)(2x + 1)

3) En utilisant la forme la plus adaptée, résoudre f(x) < 0

4) Démontrer que, pour tout x € R, f(x) – 4 = x(2x +9)

5) En déduire les solutions de l'équation f(x) > 4​


Sagot :

Réponse :

Commence par tout développer :

[tex]f(x)=(2x+1)^2-(x-3)(2x+1)[/tex]
[tex]f(x)=4x^2+4x+1-(2x^2+x-6x-3)[/tex]
[tex]f(x)=4x^2+4x+1-2x^2+5x+3[/tex]
[tex]f(x)=2x^2+9x+4[/tex]

Pour simplifier les calculs, refactoriser :

[tex]f(x)=2x^2+8x+x+4[/tex]
[tex]f(x)=2x(x+4)+x+4[/tex]
[tex]f(x)=(x+4)(2x+1)[/tex]              On met (x+4) en facteur

3/ Comme on a le produit de 2 fonctions affines, il suffit de trouver les racines cas par cas :

[tex]x+4 =0[/tex]             [tex]x=-4[/tex]
[tex]2x+1=0[/tex]           [tex]x=-\frac{1}{2}[/tex]

On sait que dans le polynôme de degré 2, [tex]a=2 > 0[/tex] donc on obtient une courbe avec une parabole "inversée" avec un minimum :

[tex]S=x\in[-4 ;-\frac{1}{2} ][/tex]

4/ Il suffit de développer f(x) et ajouter -4 :

[tex]f(x)-4=2x^2+9x+4-4[/tex]
[tex]f(x)-4=2x^2+9x[/tex]

En factorisant, on retrouve :

[tex]f(x)-4 = x(2x+9)[/tex]

5/ On connaît déjà la forme de la courbe donc il suffit de trouver les racines de f(x)-4 :


[tex]f(x)-4=0[/tex]
[tex]x(2x+9)=0[/tex]
[tex]x=0[/tex]      ou     [tex]x=-\frac{9}{2}[/tex]

Donc les solutions sont :

[tex]S=x\in]-\infty;-\frac{9}{2} ]\cup[0;+\infty[[/tex]

Nota Bene : Il faut toujours se rappeler de la forme de la courbe pour trouver les solutions, ici on a une parabole "inversée" donc les bornes commencent et finissent toujours par - l'infini et + l'infini.

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.