Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.
Sagot :
Bonsoir,
On considère l'équation :
[tex](x-5)(3x-8)=(9x+4)(x-5)[/tex]
1) Pour obtenir une équation équivalente dont le membre de droite est 0, il suffit de soustraire [tex](9x+4)(x-5)[/tex] dans les deux membres de l'égalité. On obtient alors :
[tex](x-5)(3x-8)=(9x+4)(x-5)\\\\(x-5)(3x-8)-(9x+4)(x-5)=(9x+4)(x-5)-(9x+4)(x-5)\\\\(x-5)(3x-8)-(9x+4)(x-5)=0[/tex]
2) On factorise désormais le membre de gauche, en utilisant le facteur commun ; il s'agit de [tex]x-5[/tex]
On obtient :
[tex](x-5)[(3x-8)-(9x+4)]=0\\\\(x-5)(3x-8-9x-4)=0\\\\(x-5)(-6x-12)=0[/tex]
On peut affirmer que cette équation est une équation produit nul.
3) Résolvons alors cette équation en utilisant une propriété :
→ Un produit de deux facteurs est nul si et seulement si l'un des facteurs est nul.
[tex](x-5)(-6x-12)=0[/tex]
[tex]x-5=0[/tex] ou [tex]-6x-12=0[/tex]
[tex]x=5[/tex] ou [tex]-6x=12[/tex]
[tex]x=5[/tex] ou [tex]x=\frac{12}{-6}[/tex]
[tex]x=5[/tex] ou [tex]x=-2[/tex]
Ainsi, l'ensemble des solutions de cette équation est :
[tex]\mathcal{S}=\{-2;5\}[/tex]
En espérant t'avoir aidé.
Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.