Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
Réponse :
Pour répondre à la question, il est préférable d'introduire la notion de convexité pour ainsi déterminer la position de la courbe exponentielle par rapport à ses tangentes :
La dérivée première vérifie : [tex](e^{x})'=e^x[/tex]
Et la dérivée seconde vérifie : [tex](e^x)''=e^x[/tex]
On sait que [tex]e^x > 0[/tex] Sur [tex]\mathbb{R}[/tex]
Par définition, si la dérivée seconde d'une fonction est positive, alors la fonction est dite convexe, c'est à dire que la courbe représentative se situe au dessus de sa tangente.
Dans notre cas, comme la dérivée seconde de la fonction exponentielle est toujours positive sur IR, cela prouve bien que la courbe est au dessus de ses tangentes sur IR.
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.