Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.
Sagot :
Réponse :
Pour répondre à la question, il est préférable d'introduire la notion de convexité pour ainsi déterminer la position de la courbe exponentielle par rapport à ses tangentes :
La dérivée première vérifie : [tex](e^{x})'=e^x[/tex]
Et la dérivée seconde vérifie : [tex](e^x)''=e^x[/tex]
On sait que [tex]e^x > 0[/tex] Sur [tex]\mathbb{R}[/tex]
Par définition, si la dérivée seconde d'une fonction est positive, alors la fonction est dite convexe, c'est à dire que la courbe représentative se situe au dessus de sa tangente.
Dans notre cas, comme la dérivée seconde de la fonction exponentielle est toujours positive sur IR, cela prouve bien que la courbe est au dessus de ses tangentes sur IR.
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.