Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Maths exponentielle (; 1er

Bonjour j’aurais besoin d’aide pour cet exercice je ne comprends vraiment rien merci


Démontrer que le graphe de la fonction exponentielle ciel est au-dessus de chacune de ses tangente

( indications : étudiez la fonction x -> e^x - e^a (x-a)-e^a)

Comment est qualifié une telle fonction ?

Sagot :

Réponse :

Pour répondre à la question, il est préférable d'introduire la notion de convexité pour ainsi déterminer la position de la courbe exponentielle par rapport à ses tangentes :

La dérivée première vérifie :   [tex](e^{x})'=e^x[/tex]

Et la dérivée seconde vérifie : [tex](e^x)''=e^x[/tex]

On sait que [tex]e^x > 0[/tex] Sur [tex]\mathbb{R}[/tex]

Par définition, si la dérivée seconde d'une fonction est positive, alors la fonction est dite convexe, c'est à dire que la courbe représentative se situe au dessus de sa tangente.

Dans notre cas, comme la dérivée seconde de la fonction exponentielle est toujours positive sur IR, cela prouve bien que la courbe est au dessus de ses tangentes sur IR.