Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Bonjour, je suis en 1ere et je n’arrive pas à faire cet exercice niveau spé maths. Si vous pouviez m’aider ce serait gentil merci !

Bonjour Je Suis En 1ere Et Je Narrive Pas À Faire Cet Exercice Niveau Spé Maths Si Vous Pouviez Maider Ce Serait Gentil Merci class=

Sagot :

Réponse :

affirmation vraie ou fausse  justifier

1) a) affirmation vraie ; Un+1 = 2Un + 5  n'est ni arithmétique ni géométrique

car une suite arithméque s'écrit  Un+1 = Un + r  et une suite géométrique s'écrit  Un+1 = qUn

b) affirmation vraie ; Vn = Un + 5 est géométrique  pour  n ∈ N

car,  Vn+1 = Un+1 + 5 = 2Un + 5 + 5 = 2Un + 10 = 2(Un + 5) = 2Vn

2) affirmation vraie ; pour n ∈ N ,  Un = - 1/(4 n + 1)

soit  Un = f(n)  où  f(x) = - 1/(4 x + 1)  définie sur [0 ; + ∞[

f est dérivable sur [0 ; + ∞[ et sa dérivée  f '(x) = 4/(4 x + 1)²  > 0 ⇒ f est croissante sur [0 ; + ∞[  par suite  (Un) est croissante sur N

    k = 63

3)   ∑ 2^k = 2⁶⁴ - 1

     i = 0  

affirmation vraie

car   S = 1 + 2 + 2² + ........ + 2⁶³

       2S = 2 + 2² + 2³ + ......... + 2⁶⁴

       2S - S = 2 + 2² + 2³ + ......... + 2⁶⁴ - (1 + 2 + 2² + ........ + 2⁶³) = 2⁶⁴ - 1

donc  S = 2⁶⁴ - 1

4) affirmation fausse

car en établissant le tableau de variation de f sur [- 3 ; 2]

     x    - 3                     - 2                        1                      2

   f(x)          croissante       décroissante        croissante

   f '(x)                +            0          -             0             +

en observant la courbe en pointillée  on constate qu'entre  [0 ; 1]  f '(x) est positive  alors que f est décroissante sur [- 2 ; 1]  

Explications étape par étape :

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.