Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.
Sagot :
Réponse:
1)On a T0 = 200 et on sait que la population de truites diminue de 20% chaque année, mais 100 sont ajoutées chaque année.
donc l'année suivante: T1 = 200(1-20/100)+100= 260
et celle d'après
T2 = 260(1-20/100) + 100 = 308
2) On a Tn+1 = Tn(1-20/100)+ 100 = Tn(0,8)+100 = 0.8(Tn+100/0,8) = 0.8(Tn+125)
Ainsi, Tn n'est ni géométrique ni arithmétique du fait de la somme entre Tn et 125.
3) On a: Un = Tn - 500
Donc Un+1 = Tn+1 - 500
Or, Tn+1 = 0.8(Tn+125)
Donc Un+1 = 0.8(Tn+125)-500 = 0.8Tn +100-500
= 0.8Tn - 400 = 0.8(Tn-500)
Or Tn - 500 = Un
Donc Un+1 = 0.8Un
Un est donc une suite géométrique de raison q = 0.8, ayant pour expression :
Un = (0.8)^n × U0
4) Un = (0.8)^n × U0
Or U0 = T0 - 500 = 200-500 = -300
Un = (0.8)^n×-300
5) On a : Un = Tn-500
Donc, Un+500 = Tn-500+500
donc Tn = Un + 500
Or Un = (0.8)^n×-300
Donc Tn = 500 - 300 × (0.8)^n
6) D'après la calculatrice, nous voyons que Tn converge vers 500, on peut donc comprendre que le nombre de truite devrait finir par se stabiliser à 500.
Si tu as besoin d'explications vis à vis d'une question ou d'aide pour d'autres choses hésite pas, mon dicord : Gazp#8628.
Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.