Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Bonjour, J’aurais besoin d’aide pour ce dm de mathématiques, merci d’avance :)

Sur la figure ci-contre, ABCD est un carré, et les triangles ABE et CBF sont des triangles équilatéraux.

On se place dans un repère (A;B;D)

1. quelle est la nature du repère (A;B;D)? Expliquer la réponse.

Soit H le pied de la hauteur issue de E dans le triangle AEB, et J, le pied de la hauteur issue de F dans le triangle CFB.

2. déterminer la longueur exacte du segment [EH] dans le repère (A;B;D).

On admet pour la suite que EH=FJ.

3. Dans le repère (A;B;D), donner les coordonnées des points D, E et F.

4. Les vecteurs DE et DF sont ils colinéaires ? Qu’en déduit-on concernant les points D, E, F?


Bonjour Jaurais Besoin Daide Pour Ce Dm De Mathématiques Merci Davance Sur La Figure Cicontre ABCD Est Un Carré Et Les Triangles ABE Et CBF Sont Des Triangles É class=

Sagot :

Réponse :

Sur la figure ci-contre, ABCD est un carré, et les triangles ABE et CBF sont des triangles équilatéraux.

On se place dans un repère (A;B;D)

1. quelle est la nature du repère (A;B;D)? Expliquer la réponse.

le repère (A; B ; D) est un repère orthonormé  car  AB = AD  et  (AB) ⊥(AD)

2. déterminer la longueur exacte du segment [EH] dans le repère (A;B;D).

AEH triangle rectangle en H  ⇒ th.Pythagore  ⇒ AE² = EH²+AH²

⇒ EH² = AE² - AH² = 1 - (1/2)² = 1 - 1/4  = 3/4  ⇒ EH = √3)/2

On admet pour la suite que EH=FJ.

3. Dans le repère (A;B;D), donner les coordonnées des points D, E et F.

D(0 ; 1)  ;  E(1/2 ; √3/2)   et   F(1 + √3/2 ;  1/2)  = ((2+√3)/2 ; 1/2)

4. Les vecteurs DE et DF sont ils colinéaires ? Qu’en déduit-on concernant les points D, E, F?

vec(DE) = (1/2 ; (√3/2) - 1) = (1/2 ; (√3  - 2)/2)

vec(DF) = ((2+√3)/2 ; 1/2  - 1) = ((2+√3)/2 ; - 1/2)

det(vec(DE) ; vec(DF)) = xy' - x'y = 1/2)*(- 1/2) - (2+√3)/2 *(√3- 2)/2

                                                     = - 1/4 - 1/4((2+√3)(-2 +√3)

                                                     =  - 1/4 + 1/4((2+√3)(2 -√3)

                                                     = - 1/4 + 1/4(4 - 3)  

                                                     = 0

Donc les vecteurs DE et DF sont colinéaires  ⇒ les points D; E et F sont donc alignés

Explications étape par étape :

Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.