Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Bonjour, J’aurais besoin d’aide pour ce dm de mathématiques, merci d’avance :)

Sur la figure ci-contre, ABCD est un carré, et les triangles ABE et CBF sont des triangles équilatéraux.

On se place dans un repère (A;B;D)

1. quelle est la nature du repère (A;B;D)? Expliquer la réponse.

Soit H le pied de la hauteur issue de E dans le triangle AEB, et J, le pied de la hauteur issue de F dans le triangle CFB.

2. déterminer la longueur exacte du segment [EH] dans le repère (A;B;D).

On admet pour la suite que EH=FJ.

3. Dans le repère (A;B;D), donner les coordonnées des points D, E et F.

4. Les vecteurs DE et DF sont ils colinéaires ? Qu’en déduit-on concernant les points D, E, F?


Bonjour Jaurais Besoin Daide Pour Ce Dm De Mathématiques Merci Davance Sur La Figure Cicontre ABCD Est Un Carré Et Les Triangles ABE Et CBF Sont Des Triangles É class=

Sagot :

Réponse :

Sur la figure ci-contre, ABCD est un carré, et les triangles ABE et CBF sont des triangles équilatéraux.

On se place dans un repère (A;B;D)

1. quelle est la nature du repère (A;B;D)? Expliquer la réponse.

le repère (A; B ; D) est un repère orthonormé  car  AB = AD  et  (AB) ⊥(AD)

2. déterminer la longueur exacte du segment [EH] dans le repère (A;B;D).

AEH triangle rectangle en H  ⇒ th.Pythagore  ⇒ AE² = EH²+AH²

⇒ EH² = AE² - AH² = 1 - (1/2)² = 1 - 1/4  = 3/4  ⇒ EH = √3)/2

On admet pour la suite que EH=FJ.

3. Dans le repère (A;B;D), donner les coordonnées des points D, E et F.

D(0 ; 1)  ;  E(1/2 ; √3/2)   et   F(1 + √3/2 ;  1/2)  = ((2+√3)/2 ; 1/2)

4. Les vecteurs DE et DF sont ils colinéaires ? Qu’en déduit-on concernant les points D, E, F?

vec(DE) = (1/2 ; (√3/2) - 1) = (1/2 ; (√3  - 2)/2)

vec(DF) = ((2+√3)/2 ; 1/2  - 1) = ((2+√3)/2 ; - 1/2)

det(vec(DE) ; vec(DF)) = xy' - x'y = 1/2)*(- 1/2) - (2+√3)/2 *(√3- 2)/2

                                                     = - 1/4 - 1/4((2+√3)(-2 +√3)

                                                     =  - 1/4 + 1/4((2+√3)(2 -√3)

                                                     = - 1/4 + 1/4(4 - 3)  

                                                     = 0

Donc les vecteurs DE et DF sont colinéaires  ⇒ les points D; E et F sont donc alignés

Explications étape par étape :