Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Bonjour, pourriez vous m'aider pour cet exercice en maths
Merci d'avance

Consigne: Calculer les fonctions dérivées des fonctions suivantes:

1. f définie sur ]0;+infini[ par f(x)= √x × e^-x

2. g définie sur ] 1; + infini [ par g ( x ) = √(x-1) × e^x

3; h définie sur R par h ( x ) = ( x² + x + 3 ) e^x+1

4. p définie sur R par p ( x ) = ( x² - 1 ) e^x

Si vous pouvez détaillez les étapes, ce serait super ! Merci beaucoup ( les "e" correspondent à la fonction exponentielle. )


Sagot :

Bonjour,

Je te conseille d'avoir ton tableau de dérivées avec toi si tu ne les connais pas encore par cœur.

1.

[tex]f(x)=\sqrt{x\times e^-^x} \\\\On \ pose\ f(x)=\sqrt{u(x)} \ avec \ u(x) = x\times e^-^x}\rightarrow u'(x) = \frac{1-x}{e^x} } \\Donc, f'(x)=\frac{u'(x)}{2\sqrt{u(x)} } =\frac{\frac{1-x}{e^x} }{2\sqrt{xe^-^x} } \\f'(x)=\frac{1-x} {2\sqrt{x} e^\frac{1}{2}^x } \\[/tex]

2.

[tex]g(x)=\sqrt{x-1} \times e^x\\g(x)=u(x)\times v(x) \ avec \ u(x)=\sqrt{x-1} \rightarrow u'(x)=\frac{1}{2\sqrt{x-1} } \ et \ v(x) = e^x \rightarrow v'(x)=e^x\\Donc, \ g'(x)=u'(x)v(x)+u(x)v'(x)=\frac{1}{\sqrt{2x-1} } \times e^x+\sqrt{x-1}\times e^x \\g'(x)=\frac{e^x}{2\sqrt{x-1} } +\sqrt{x-1} \times e^x[/tex]

3.

[tex]h(x)=(x^{2} +x+3)e^x^+^1\\h(x)= (u(x)\times v(x))'\ avec \ u(x)=(x^{2} +x+3)e^x^+^1 +(x^{2} +x+3)\rightarrow u'(x)=(2x+1)e^x^+^1+(x^{2} +x+3) \ et \ v(x)=e^x^+^1 \rightarrow v'(x)=e^x^+^1\\Donc, \ h'(x)=u'(x)v(x)+u(x)v'(x) = (2x+1)e^x^+^1+(x^{2} +x+3)e^x^+^1\\h'(x)=3xe^x^+^1+4e^x^+^1+x^{2} e^x^+^1[/tex]

4.

[tex]p(x)=(x^{2} -1)e^x\\p(x)=u(x)\times v(x) \ avec \ u(x) =(x^{2} -1) \rightarrow u'(x)=2x \ et \ v(x)=e^x \rightarrow v'(x) = e^x\\Donc, \ p'(x) = u'(x)v(x)+u(x)v'(x)=2xe^x+(x^{2} -1)e^x\\p'(x)=2xe^x+x^{2} e^x-e^x[/tex]

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.