Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Bonjour pouvez vous m’aider ? Merci

Vrai ou faux avec justification obligatoire
Soit un polynôme de second degré représenté par f(x) = 2x2 - 5 x - 3

1)
La forme tactorisée est †(x ) = (2x +1 ) (x-3) vrai ou taux

2) - 1 et 3 sont les racines de ce polynôme Vrai ou taux
Justification obligatoire


Merci



Bonjour Pouvez Vous Maider Merci Vrai Ou Faux Avec Justification Obligatoire Soit Un Polynôme De Second Degré Représenté Par Fx 2x2 5 X 3 1 La Forme Tactorisée class=

Sagot :

Bonjour


f(x) = 2x^2 - 5x - 3


1) la forme factorisée est f(x) = (2x + 1)(x - 3) :


soit tu pars de la forme factorisée et tu développes soit tu pars de la forme développée et tu factorises.


f(x) = (2x + 1)(x - 3)

f(x) = 2x * x - 2x * 3 + 1 * x - 1 * 3

f(x) = 2x^2 - 6x + x - 3

f(x) = 2x^2 - 5x - 3 vrai


f(x) = 2x^2 - 5x - 3

f(x) = 2(x^2 - 5x/2 - 3/2)

f(x) = 2(x^2 - 2 * x * 5/4 + (5/4)^2 - (5/4)^2 - 3/2)

f(x) = 2[(x - 5/4)^2 - 25/16 - 24/16]
f(x) = 2[(x - 5/4)^2 - 49/16]
f(x) = 2[(x - 5/4)^2 - (7/4)^2]
f(x) = 2(x - 5/4 - 7/4)(x - 5/4 + 7/4)

f(x) = 2(x - 12/4)(x + 2/4)

f(x) = 2(x - 3)(x + 1/2)

f(x) = 2(x + 1/2)(x - 3)

f(x) = (2x + 1)(x - 3)


xomle tu as pu le remarquer il est plus simple et plus rapide de developper l’expression plutôt que de la factoriser


2) -1 et 3 sont les racines de ce polynôme :


faux


les racines du polynôme sont les résultats de :

f(x) = 0

(2x + 1)(x - 3) = 0


un produit de facteur nul :

2x + 1 = 0 ou x - 3 = 0

2x = -1 ou x = 3

x = -1/2 ou x = 3


les racines sont : -1/2 et 3

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.