Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Bonjour, j'ai un exercice dans mon dm et je n'arrive pas le faire ...
ABCD est un trapèze rectangle en A dont on ne connaît pas les dimensions.
M est un point du segment [AB].
On pose AM=x,et on définit par :
F(x) l'air du trapèze AMCD
G(x) l'aire du triangle MBC
on a représenté ci contre les courbes représentatives des fonctions f et g.
Quelle sont les dimensions AB,BC,CD et AD du trapèze ABCD


Bonjour Jai Un Exercice Dans Mon Dm Et Je Narrive Pas Le Faire ABCD Est Un Trapèze Rectangle En A Dont On Ne Connaît Pas Les Dimensions M Est Un Point Du Segmen class=

Sagot :

bonjour

on voit sur les graphiques que x varie de 0 (quand M est en A)

jusqu'à 5 (quand M est en B)

on connaît la mesure du côté AB

                      AB = 5  

• aire du triangle MBC

             elle décroît de 5 à 0 quand x croît de 0 à 5  

   

      x       0               5

  g(x)       5       ↘      0                

g(x) = (1/2)(base * hauteur

g(x) = (1/2) MB*AD

g(x) = (1/2) (5 - x) * AD

on sait que : g(0) = 5

 g(0) = (1/2)(5 - 0)*AD

               d'où

(1/2)(5 - 0)*AD = 5

(1/2)(5)*AD = 5

                               AD = 2

[ remarque : g(x) = (1/2) (5 - x) * AD

                    g(x) = (1/2) (5 - x) * 2

                    g(x) = 5 - x

• aire du trapèze AMCD

      x       0               5

  f(x)        3       ↗      8    

f(x) = (somme des bases * hauteur)/2

f(x) = (AM + DC)* AD /2

f(x) = (x + DC)*2/2

f(x) = x + DC

on sait que f(0) = 3

d'où  f(0) = 0 + DC

          3 = DC

                                   CD = 3

                              f(x) = x + 3

• quand (CM) est perpendiculaire à (AB), le quadrilatère AMCD est un rectangle

Le triangle CMB est rectangle en M ; CM = AD = 2 et MB = 5 - 3 = 2

Pythagore

BC² = BM² + MC²

BC² =  2² + 2²

BC² = 2*2²

                                            BC = 2√2

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.