ZC3
Answered

Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

bonsoir stp vous pouvez m aider sur une question en maths:
il faut dire si cette affirmation est vraie ou fausse
pour tout nombre x, (2x+1) au carré -4=(2x+3)(2x-1)
merci du fond du cœur


Sagot :

Réponse:

Bonsoir,

L'affirmation est vraie

Explications étape par étape:

[tex] {(2x + 1)}^{2} - 4 = {(2x + 1)}^{2} - {2}^{2} [/tex]

On utilise l'identité remarquable a²-b²=(a+b)(a-b)

[tex] {(2x + 1)}^{2} - {2}^{2} \\ = (2x + 1 + 2)(2x + 1 - 2) \\ = (2x + 3)(2x - 1)[/tex]

Donc

[tex] {(2x + 1)}^{2} - 4 = (2x + 3)(2x - 1)[/tex]

L'affirmation est donc vraie.

Explications étape par étape:

cette affirmation est vrai puisque

( 2X + 1 ) carré - 4

utiliser la formule du binôme ( a + b ) carré = a carré + 2an + b carré pour développer ( 2X + 1 ) carré

4X carré + 4x + 1 -4

soustraire

4X carré + 4X - 3

factoriser l'expression par regroupement réécrire sous forme 4x carré + ax + bx - 3 pour rechercher a et b configurer

a + b = 4

an = 4 ( - 3 ) = - 12

ab négatif a et signes opposes a + b positif répertorier les paires de ce nombre entier qui donne le produit - 12

- 1 , 12

- 2 , 6

- 3 , 4

calculer la somme de chaque paire

- 1 + 12 = 11

- 2 + 6 = 4

- 3 + 4 = 1

la solution est la paire qui donne la somme 4

a = - 2

b = 6

réécrire

( 4x carré - 2x ) + ( 6x - 3 )

factoriser

( 2x - 1 ) ( 2x + 3 ) ce qui est bien énonce

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.