Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.
Sagot :
Bonjour,
déjà ce que tu as écrit n'est pas possible
[tex]\displaystyle \sum_{k=1}^n \left( a_{k+1}-a_k\right)=a_{n+1}-a_k[/tex]
k est une variable muette dans la somme, tu ne peux pas la retrouver dans l'expression de droite, j imagine que tu voulais écrire
[tex]\displaystyle \sum_{k=1}^n \left( a_{k+1}-a_k\right)=a_{n+1}-a_{\bf{1}}[/tex]
Cette formule est correcte, et si tu veux l'appliquer dans ton exemple, comment pourrais-tu procéder?
Notons pour n entier non nul
[tex]a_n=\dfrac1{n}[/tex]
Dans ce cas
[tex]\displaystyle \sum_{k=1}^n \left( a_{k+1}-a_k\right)\\\\\displaystyle =\sum_{k=1}^n \left( \dfrac1{k+1}-\dfrac1{k}\right)\\\\=\dfrac1{n+1}-1[/tex]
donc du coup
[tex]\displaystyle \sum_{k=1}^n \left( \dfrac1{k}-\dfrac1{k+1}\right)\\\\\displaystyle =-\sum_{k=1}^n \left( \dfrac1{k+1}-\dfrac1{k}\right)\\\\=1-\dfrac1{n+1}[/tex]
Merci
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.