Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
a^2 = b^2 + c^2 avec a, b et c impairs
2) le carré d’un nombre impair :
Ce nombre peut s'écrire 2n + 1 Nous avons : ( 2n + 1 )² = 4n² + 4n + 1 =
2 ( 2n² + 2n ) + 1 Ce résultat est de la forme 2 x + 1 , donc le carré est impair.
a^2 est impair.
3) de même b^2 et c^2 sont impairs, la somme de deux nombres impairs est paire donc b^2 +c^2 est un nombre pair.
4) si a^2 est pair b^2 + c^2 ne peut pas être impair
2) le carré d’un nombre impair :
Ce nombre peut s'écrire 2n + 1 Nous avons : ( 2n + 1 )² = 4n² + 4n + 1 =
2 ( 2n² + 2n ) + 1 Ce résultat est de la forme 2 x + 1 , donc le carré est impair.
a^2 est impair.
3) de même b^2 et c^2 sont impairs, la somme de deux nombres impairs est paire donc b^2 +c^2 est un nombre pair.
4) si a^2 est pair b^2 + c^2 ne peut pas être impair
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.