Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour j’ai du mal pour les 2 exercices svp

Bonjour Jai Du Mal Pour Les 2 Exercices Svp class=

Sagot :

Bonjour :)

Domino 1

[tex] \frac{6}{4} = \frac{3}{2} = 1.5[/tex]

Domino 2

[tex] \frac{1}{5} + \frac{3}{15} = \frac{1 \times 3}{5 \times 3} + \frac{3}{15} = \frac{3}{15} + \frac{3}{15} = \frac{6}{15} = \frac{2 \times 3}{3 \times 5} = \frac{2}{5} [/tex]

Domino 3

[tex] \frac{4}{4} + \frac{1}{2} = \frac{4}{4} + \frac{2}{4} = \frac{6}{4} = 1.5[/tex]

[tex] \frac{30}{15} = 2[/tex]

Domino 4

[tex] \frac{6}{18} = \frac{2 \times 3}{2 \times 3 \times 3} = \frac{1}{3} [/tex]

[tex] \frac{2}{3} + \frac{9}{27} = \frac{2 \times 9}{3 \times 9} + \frac{9}{27} = \frac{18}{27} + \frac{9}{27} = \frac{27}{27} = 1[/tex]

Domino 5

[tex] \frac{5}{15} = \frac{1 \times 5}{3 \times 5} = \frac{1}{3} [/tex]

[tex] \frac{6}{15} = \frac{2 \times 3}{3 \times 5} = \frac{2}{5} [/tex]

Domino 6

[tex] \frac{3}{2} + \frac{1}{6} = \frac{3 \times 3}{2 \times 3} + \frac{1}{6} = \frac{9}{6} + \frac{1}{6} = \frac{10}{6} = \frac{2 \times 5}{2 \times 3} = \frac{5}{3} [/tex]

J'espère t'avoir aidé ;)

Mozi

Bonjour,

On a A(0,7 ; -3,4), B(3,5 ; -0,3) et C(-2,6 ; 2,4)

On en déduit : AB(2,8 ; 3,1), CA(3,3 ; -5,8) et  CB(6,1 ; -2,7)

Les vecteurs orthogonaux respectivement à ses vecteurs sont :

uC'(3,1 ; -2,8), uB'(5,8 ; 3,3) et uA'(2,7 ; 6,1)

Enfin C’(2,1 ; -1,85), B’(-0,95 ; -0,5) et A’(0,45 ; 1,05) sont les milieux respectifs de [AB], [AC] et [BC]

on note (dA'), (dB') et (dC') les médiatrices passant respectivement par A', B' et C'

uA' est un vecteur directeur de  (dA'). uB' est vecteur directeur de (dB') et uC' est un vecteur directeur de (dC')

L'équation de  (dA') s'écrit donc 6,1x - 2,7y + a = 0

avec a = -6,1 xA' + 2,7 yA' = -6,1 * 0,45 + 2,7 * 1,05 = 0,09

(dA') : 61x - 27y + 0,9 = 0

L'équation de  (dB') s'écrit 3,3x - 5,8y + b = 0

avec b = -3,3 xB' + 5,8 yB' = -3,3 * (-0,95) + 5,8 * (-0,5) = 0,24

(dA') : 33x - 58y +2,4 = 0

I(xI ; yI) vérifie à la fois les deux équations précédentes.

61 [tex]x_{I}[/tex] - 27 [tex]y_{I}[/tex] + 0,9 = 0

33 [tex]x_{I}[/tex] - 58 [tex]y_{I}[/tex] +2,4 = 0

Il ne reste plus qu'à résoudre le système et faire la somme des coordonnées.

Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.